This paper presents experimental results on the fragmentation of a low meting point liquid metallic alloy jet into water.
The liquid is Field's metal whose melting point is 62°C. Data are obtained using high-speed camera acquisition and the solidified particles are sieved, a size Probability Distribution Function (PDF) is obtained from their mass distribution. These results are compared to separate data acquisitions obtained using a phase doppler anemometer (PDA used in reflexion regime). Injection diameter range from 1 mm to 5 mm and injection velocity from 2.28 m/s to 4.97 m/s resulting in a Weber number ranging from 26 to 309 and a Reynolds number ranging from 4577 to 24875.
The conclusion is that for these intermediate Weber and Reynolds numbers, the size of the droplets can mainly be related to Kelvin-Helmholtz instabilities. However there exists also a long tail of small sized droplet whose distribution can be attributed to turbulent reagglomeration of ligaments. This part of the distribution is very close to a log-lévy law thanks to a model developped by [Rimbert & Castanet, PhysRevE, 84, 016318, 2011] . By estimating the different turbulent scales, it is even possible to construct the small size distribution of droplet without using any fitting parameter.