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Abstract 

This study is devoted to the measurement of colloid concentration in drops, as they occur in numerous industrial 

applications, such as paint sprays, ink-jet printing or the production of pharmaceutical products. A Monte Carlo 

ray-tracing approach has been used to study the light scattering from such particles, in which the polarization and 

intensity of all rays impinging onto a defined detector aperture are collected, allowing the signal generation arising 

from the drop passing through a plane wave or focused Gaussian beam to be simulated. When using a highly 

focused incident beam, the scattering corresponds to the optical arrangement of the time-shift technique, allowing 

the measurement of drops with suspended particles to be explored. For validation of the ray-tracing code, 

comparisons between the simulated time-shift signal and the measured time-shift signal were made, yielding 

excellent agreement. A model has been formulated to describe these signals; hence, to allow colloid 

concentration to be estimated directly from the received time-shift signals. 
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1. Introduction 

    Colloidal drops are encountered frequently in numerous process industries, such as in pharmaceutical products 

or spray drying to produce powders. However current optical measurements techniques are not capable of 

measuring the solid particle concentration in such drops [1]. The present study is devoted to the measurement of 

drop size and particle concentration of colloidal drops by using the time-shift technique [2]. This work builds on 

first results reported in [3], in which a Monte Carlo ray-tracing method was used to predict the time-shift signal 

received from “two-dimensional” drops. To simulate the photon transport in the colloidal drop by using the two-

dimensional Monte Carlo method, the polarization state of the ray does not change after each scattering event; 

however, this is not the real case, because after each scattering event, not only the polar angle exhibits 

deviations, but also the azimuthal angle. This leads to a change of the polarization state. For the current 

simulation, a three-dimensional Monte Carlo ray-tracing code is developed in which the change of polarization 

state after each scattering event is considered. The polarization state of the ray is updated by tracking the 

reference plane. The outcome of this investigation is a recommendation of signal processing steps necessary to 

estimate solid particle concentration in drops from time-shift signals. 

2. Colloidal drop model 

In this section, the model for the colloidal drop is described. As Figure 1 illustrates, a drop with the diameter D 

contains a certain number of suspended particles, whose radius r is between the 0.1 λ to 5 λ; all particles have 

the same radius. Assuming a random distribution in space, the distance between two suspended particles in the 

drop follows the exponential distribution [4]. 
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Figure 1: Drop with diameter D contains suspended particles with the radius of r. The refractive index for the 

surrounding medium and the drop is 𝒏𝟏 and 𝒏𝟐 

Referring to Figure 1, the volume concentration of the colloids in the drop can be described as: 

𝜅 =
𝑁 ∗ 𝑉𝑝

𝑉𝐷
 (1) 

in which N is the number of the suspended particles in the drop, and 𝑉𝑝 and 𝑉𝐷  are the volumes of a single 

suspended particle and the drop respectively. The optical average path length between scatterers E(L) is related 

to the concentration of colloidal particles, defined by the following equation [3]: 

𝐸(𝐿) =
𝑉𝑝

𝜅 ∗ 𝜎𝐸

(2) 

in which 𝜎𝐸 describes the scattering cross section of the single suspended particle, assumed here to be 𝜎𝐸 = 𝜋 ∗

𝑟2. 

3. Computational procedure 

    The light scattered from the surface of the drop is computed using an enhanced ray-tracing algorithm based on 

geometrical optics, as described in [5] and [6]. The geometric situation considered is a spherical drop with multiple 

suspended particles situated arbitrarily in the drop. For any ray intersecting the drop surface, the computation of 

the amplitude and the propagation direction of the reflected ray and transmitted ray follows the Fresnel equations 

and Snell’s Law. For internal scattering, the ray path is computed using the Monte Carlo method. The ray path 

length between two consecutive scattering events is determined by the random free path length and the 

propagation direction. The computation process is described in the following two subsections. 

3.1 Computation of the random free path length 

    The photon path is a series of straight segments between the consecutive scattering events, which is named 

the free path length. Its probability density distribution follows an exponential distribution [4]. After a ray travels the 

length l, the probability density function that the scattering event happens is given by: 

𝑃(𝑙) =
1

𝐸(𝐿)
∙ 𝑒−𝑙/𝐸(𝐿) (3) 

The cumulative distribution function follows that: 

∫ 𝑃(𝑙) ∙ 𝑑𝑙 = 𝜉
𝑙1

0

(4) 

Where ξ is a random number between (0, 1). Substituting equation (3) into (4), the relation between the free path 

length and ξ is obtained: 

(1 − 𝑒
−

𝑙1
𝐸(𝐿)) = 𝜉 (5) 

𝑙 = − ln(1 − 𝜉) ∗ 𝐸(𝐿) (6) 

    Since 𝜉 is between (0, 1), equation (4) can be expressed as [7]: 

𝑙 = − ln(𝜉) ∗ 𝐸(𝐿) (7) 

    Hence, in the Monte Carlo ray-tracing code, by generating a random number ξ between (0, 1), the random free 

path length can be determined with equation (7), whereby E(L) is given by the volume concentration (Eq. (2)) 

3.2 Computation of the new propagation direction of ray 

A fundamental problem for the Monte Carlo simulation in three dimensions is the determination of the polar 

scattering angle and the azimuthal angle. The propagation direction of the ray should be updated after each 

scattering event, as well as the polarization state of the electric field. The scattering angle of the zenith angle and 

the azimuthal angle should be determined with the scattering phase function. When the size of colloidal particle is 
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between 0.2 λ and 10 λ, its scattering phase function can be described with Mie Theory [12]. The deflection of the 

scattering angle after the scattering event is illustrated in Figure 2. 

 

Figure 2: illustration for the polar deflection angle θ and azimuthal angle φ after the scattering event. 

For the calculation of the polar deflection angle, the Henyey Greenstein phase function in Eq. (8) is used. The 

HG function describes the probability density for the deflection of the polar deflection angle. For the scattering in 

the azimuthal angle, the scattering is usually treated as isotropic. The azimuthal angle φ of scattering is uniformly 

distributed in [0, 2π]. 

𝐻𝐺(𝜃) =
(1 − 𝑔2)

(1 + 𝑔2 − 2𝑔(cos 𝜃)2)
3
2

(8) 

𝜑 = 2𝜋 ∗ 𝜉 (9) 

where ξ is also a random number in the range ∈ (0, 1) and g is the asymmetry factor that defines the distribution 

shape [8]. The factor g lies in the range ∈ (-1, 1). g=1 means pure forward scattering; g=-1 means pure backward 

scattering: it can be expressed as the following:  

𝑔 = ∬𝑝(𝜗) ∙ cos 𝜗 𝑑2Ω (10) 

In which 𝑝(𝜗) is the phase function and follows: 

∬𝑝(𝜗)𝑑2Ω

4𝜋

= 1 (11) 

The cumulative distribution function of the equation (8) can be written as: 

𝐹𝜃(𝑥) = ∫ 𝐻𝐺(𝜃)𝑑𝜃
𝑥

0

 (12) 

where 𝑥 ∈ (0, 𝜋). There is no analytical expression for the inversion function of 𝐹𝜙(𝑥) [11]. Instead, the inversion 

function of cumulative probability density function of the cosine of polar deflection angle can be obtained directly. 

For the probability density function of the cosine of the polar deflection angle, its cumulative distribution can be 

written as: 

𝐹𝑐(𝑥) = ∫𝑝(cos(𝜃))𝑑 cos(𝜃)

𝑥

−1

(13) 

For the distribution function 𝐹𝑐(𝑥), the inverse function can be expressed analytically [7]: 

𝑐𝑎(𝜃) ≝ cos(𝜃) = {

1

2𝑔
(1 + 𝑔2 − (

1 − 𝑔2

1 − 𝑔 + 2𝑔𝜉
)

2

)

2𝜉 − 1                                                 𝑖𝑓 𝑔 = 0

 𝑖𝑓 𝑔 ≠ 0 (14) 

    In the code, to determine the polar deflection angle and the azimuthal angle after the scattering event, two 

random numbers 𝜉1 and 𝜉2 are be generated and by using the equation (9) and (14), the polar deflection angle 

and the azimuthal angle can be determined.  

    For updating the direction after the scattering event, the new direction is calculated with the following equation 

[7]: 
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(

𝑢̂𝑥

𝑢̂𝑦

𝑢̂𝑧

) =

[
 
 
 
 
 

𝑢𝑥 ∗ 𝑢𝑧

√1 − 𝑢𝑧
2

𝑢𝑦 ∗ 𝑢𝑧

√1 − 𝑢𝑧
2

−√1 − 𝑢𝑧
2

−
𝑢𝑦

√1 − 𝑢𝑧
2

−
𝑢𝑥

√1 − 𝑢𝑧
2

0

𝑢𝑥

𝑢𝑦

𝑢𝑧

]
 
 
 
 
 

∙ (
sin 𝜃 cos𝜑
sin 𝜃 sin𝜑

cos 𝜃

) (15) 

In which, the [𝑢𝑥   , 𝑢𝑦   , 𝑢𝑧] represent the current direction and the [𝑢̂𝑥   , 𝑢̂𝑦  , 𝑢̂𝑧] is the direction after the 

scattering event. After the calculation of the new direction, the polarization state of the electric field should also be 

updated. 

With the initial position, the free path length, and the propagation direction, the position and the propagation 

direction after the scattering event can be calculated. The computation procedure for the single ray is explained 

with the flow chart in Figure 3. For the single ray, the ray tracing inside the drop will be terminated when its 

intensity is less than 1% of the original intensity. 

 

Figure 3: Flow chart for the computation procedures for the single ray by using the Monte Carlo method 

For each computation of the time-shift signal, several millions of rays were launched into the colloidal drop to 

build up the time-shift signal. The computation procedure in the Figure 3 is repeated for all the rays. The scattered 

intensity is the intensity sum of all rays impinging onto the detector surface. All rays are treated completely 

incoherent, and the intensity of individual rays is first computed. If M stands for the number of the rays which falls 

onto the prescribed detector aperture, the total received intensity is given by equations (16) and (17) [5]: 

𝐼𝑘 =
𝑐

2
|𝑬|2 (16) 
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𝐼𝑡𝑜𝑡𝑎𝑙(𝜃𝑖 , 𝜑𝑗) = ∑ 𝐼𝑘

𝑀

𝑘=1

 (17) 

4. Simulated signal for the time-shift technique 

    The time-shift technique, which is also known as the pulsed-displacement technique, is a method to measure 

size, velocity, and relative refractive index (m) of spherical particles. As Figure 4 illustrates, two detectors placed 

in the backscattering direction (e.g. 160°) will register a time dependent signal comprising several peaks, as 

illustrated in the Figure 4, corresponding to the different scattering orders when a transparent drop passes 

through a shaped beam. Details about the measurement principle and optical design can be found in [2], [9], [10]. 

When the drop passes through the laser beam, typically for each detector, three signal peaks are obtained. The 

signal peaks are designated p=0, which is obtained from the reflection scattering, p=2.1 and p=2.2, which are 

obtained from second-order refraction scattering. 

 

Figure 4: Principle of time-shift measurement technique, adapted from [2]. θs expresses the angle of the incident point 

for each scattering order. 

4.1. Simulated time-shift signal for water drop 

For simulation, certain specific values have been fixed to match the arrangement of the real measurement 

instrument: the beam waist of the laser source is 8 μm; a detector is place at the scattering angle 165° with a solid 

angle of 0.032 sr.; the laser source is perpendicularly polarized with the wavelength 405 nm.  

First, the time-shift signal for a pure water drop is simulated. The water drop is generated with a 

monodispersed  droplet generator (FMP, Erlangen) with a diameter of 120μm, as Figure 5 (a) shows. Figure 5 (b) 

shows the results for the comparison between the simulated time-shift signal and the measured time-shift signal. 

In Figure 5 (b), the black dashed line represents the simulated time-shift signal; the blue solid line is the measured 

signal from the experiment: the agreement is satisfactory. 
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 (a)  (b) 

Figure 5: (a) Drop chain with a diameter of 120μm generated by a FMP droplet generator; (b) Comparison between the 

simulated time-shift signal and the measured time-shift signal for a water drop with the diameter 120μm. (Scattering 

angle θs=165°, s polarization) 

4.2 Simulated time-shift signal for colloidal drop 

The time-shift signals have been simulated for a colloidal drop by varying the volume concentration. The drop 

size is 100 μm with a relative refractive index of n2=1.34. The volume concentration is about 4% and 8 %, which 

correspond to optical average path lengths of 20μm and 10μm. 

 
(a). Time-shift signal for E(L)=20μm 

 
(b). Time-shift signal for E(L)=10μm 

Figure 6: Simulated time-shift signals from the colloidal drop for optical average path length E(L)=20μm and 

E(L)=10μm. (DDrop=100μm, θs=165°, p polarization) 

Figure 6 shows the simulated time-shift signals from one detector for the E(L)=20μm und E(L)=10μm 

separately. Both of the signals exhibit the feature that a signal peak sits on a pedestal. The pedestal arises 

through the internal scattering from the suspended particles and the signal peak arises from the reflection 

scattering from the drop surface. Comparing the results in Figure 6 (a) and (b), the reflection peaks have a similar 

height; this is because the suspended particle does not affect the reflection from the surface and furthermore, the 

reflection peak should have the same amplitude as the reflection peak from a pure drop with the same size. 

However, the signal height from the internal scattering is different. When the optical average path length is larger, 

this corresponds to a smaller volume concentration of solid particles in the drop. Therefore, the internal scattering 

from the drop with E(L)=20μm is weaker than the internal scattering from drop with E(L)=10μm. Hence, the ratio 

between the amplitude of the reflection peak Sr and the remaining signal pedestal strength Sw is related to the 

optical average path length of the colloidal drop. For a given size of the droplet, a look-up table for the relationship 

between this ratio and the optical average path length of the colloidal drop could be created.  

5 Signal processing 

The optic arrangement of the time-shift measurement instrument is illustrated in Figure 4, in which the detector 

covers a solid angle of 0.032 sr. When a pure drop falls through a Gaussian beam, the Generalized Lorenz-Mie 

Theory [13] predicts a scattered intensity in the far-field as [14]: 
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𝐼(𝑟, 𝜃, 𝜑) =
1

2𝜇0𝑐𝑘
2𝑟2

[|𝑆1(𝜃𝐷 , 𝜑𝐷)|2 + |𝑆2(𝜃𝐷, 𝜑𝐷)|2] (17) 

in which 𝑆1  and 𝑆2  are the scattering amplitudes for parallel and perpendicular polarized Gaussian beam 

separately; 𝜃𝐷 𝑎𝑛𝑑 𝜑𝐷 are the polar angle and azimuthal angle of the detector center in the spherical coordinate 

system; k is the wave number.  

    When a colloidal drop passes through the laser beam, a signal, which is similar to the signal in Figure 6, will be 

detected by the detector. The size of the drop can be determined as the time shift between the two reflection 

peaks [2]. By integrating equation (17) over the detector surface, the amplitude of reflection peak Sr can be 

computed. Then the ratio between the amplitude of the reflection peak Sr and the remaining signal pedestal Sw 

could be obtained. With the look-up table, the optical average path length of the colloidal drop could be estimated, 

and then the volume concentration of the particles could be calculated using equations (1) and (2). 

Discussion and Conclusions 

    In the study, a three-dimensional Monte Carlo ray-tracing model is developed to predict the time-shift signal 

from a colloidal drop, which builds on the work from [3]. For validation, the simulated time-shift signal has been 

compared with the measured time-shift signal from the pure drop, yielding excellent agreement. It’s clear that the 

current work is still limited to the measurement of solid particle concentration in the colloidal particle. For the 

further work, the results from the simulation will be compared with the results from simulated results by using the 

discrete dipole approximation method [15] and the results from corresponding experiments. 
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