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Abstract
In this paper, closure of the Scalar Dissipation Rate (SDR) in the Spray Flamelet Equations (SFE) is addressed. For
this purpose, the gradient gξ of the mixture fraction ξ is used instead of the SDR itself. A transport equation for gξ is
derived and transformed from physical into mixture fraction space. Moreover, the SFE of the species mass fractions
and of gas temperature are re-derived in terms of gξ for consistency, where differential diffusion is considered. In
the resulting set of equations, two different kinds of unclosed quantities appear: source terms due to momentum
and energy exchange between the liquid phase and the gas phase and the spatial gradient of the product of the
gas velocity and the gas density, â = d(ρuy)/dy. Closure of the latter is the focus of the present study. Numerical
simulations of different counterflow ethanol/air flames in physical space are carried out using a well established
detailed model, and the results are employed for the validation and analysis of the newly proposed set of SFE. In
particular, a non-premixed gas flame is established as a base case and then perturbed by means of different mono-
disperse sprays injected from the air side of the configuration. Introducing a stream-like function, an expression
for â is obtained. The validation confirms that the new set of SFE perfectly reproduces the counterflow structure
when the correct profiles of the unclosed evaporation-related source terms are available. Moreover, the suitability of
imposing a constant value for the closure of â is tested in terms of the ability of the SFE of properly predicting both
gξ and the spray flamelet structure of the reference counterflow flames. Two different alternatives are considered
for the constant value of â: its value at the location of stoichiometric mixture fraction and its value at the air side of
the counterflow configuration. The contributions of the individual terms in the SFE are analyzed, providing insight
into the influence of evaporation. It is found that the main physical phenomena in the counterflow (spray) flames are
adequately recovered when the value of â at stoichiometric mixture is employed. The proposed approach provides
advancement towards the development of a comprehensive and self-contained spray flamelet theory.
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Introduction
Following the classical work of Peters [1], a non-premixed flamelet can be defined as an essentially one-dimensional
structure located in the reaction zone of a thin flame. This assumption is formally introduced by a change of
coordinates of the conservation equations of species mass fractions and energy from the three-dimensional physical
space, (~x, t), into a one-dimensional composition space, (ξ, τ ), where ξ is the mixture fraction and τ is a time-like
variable [1]. This procedure is well established for non-premixed gas flames. In the transformed set of equations, the
so-called (gas) flamelet equations, the only unclosed variable is the Scalar Dissipation Rate (SDR), χ. The flamelet
equations can be closed in composition space using either the complementary error function (erfc) or the natural
logarithm (ln) for modeling the SDR [1]. For spray flames, studies focussing on the Spray Flamelet Equations (SFE)
in mixture fraction space have appeared only very recently [2, 3, 4, 5]. In these much more complex flames, there
is a need for appropriate models for the closure of the scalar dissipation rate and the evaporation-related source
terms appearing in the SFE, being the former the main objective of the present work.
The inherent difficulties associated with the obtention of general analytical profiles of the SDR increase the attrac-
tiveness of approaches directly considering a transport equation for the scalar dissipation rate χ in composition
space [6, 7], since they may take into account any arbitrarily complex evaporation profile. However, even though
transport equations for the SDR in spray flames in physical space have been proposed in recent years [4, 8], no at-
tempt has yet been made to implement them for closure of the SFE, which is attributable to their complexity and the
expected stiffness of the resulting set of equations. Recent work of Scholtissek et al. [9] suggests that considering
the gradient of the mixture fraction instead of the SDR could lead to a solvable and easy to handle system. This
alternative will be explored in the present paper.
Thus, a transport equation for the gradient of the mixture fraction, gξ(ξ) is derived and evaluated. For consistency,
the spray flamelet equations for the species mass fractions and for gas temperature will be re-derived in terms of
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this variable. The newly proposed set of SFE will be validated in the context of three laminar ethanol/air counterflow
flame structures generated with a well established approach [10, 11]. Specifically, an ethanol/air gas flame in which
an air stream is injected from the left side of the configuration and directed against a pure fuel stream will be
established as a base case and perturbed by injecting two different mono-disperse sprays from the air side of the
configuration. Introducing a stream-like function, an expression for the gas velocity in mixture fraction space will
be derived from the global mass and momentum balance equations and used then for closure of the gradient of
the product of the gas density ρ and the axial gas velocity uy, â = d(ρuy)/dy. Moreover, the appropriateness of
imposing a constant value for the closure of â will be tested in terms of the ability of the SFE of properly predicting
both gξ and the spray flamelet structure of the reference counterflow flames. Two different alternatives will be
considered for the constant value of this quantity: its value at the stoichiometric point and its value at the air side
of the counterflow configuration. Particular emphasis will be given to the budget of the different terms of the spray
flamelet equations, which will be studied to determine whether the main physical phenomena taking place in these
flames are properly predicted and how evaporation affects the quality of the assumptions. The results intend to
provide advancement towards the formulation of a comprehensive and self-contained spray flamelet theory.

Governing Equations
For steady, axi-symmetric dilute counterflow spray flames, the governing equations for total mass and momentum
in the radial direction can be written as [10, 11]

1

r

∂(ρurr)

∂r
+
∂(ρuy)

∂y
= Ṡv (1)

and

ρur
∂ur
∂r

+ ρuy
∂ur
∂y

= −dp
dr

+
∂

∂y

(
µ
∂ur
∂y

)
+ Ṡm, (2)

respectively, where the boundary layer approximation has been adopted and low Mach number has been as-
sumed [10]. In these equations, ρ is the gas density, ur and uy are the radial and axial gas velocity, respectively,
µ is the dynamic gas viscosity and Ṡv and Ṡm are sources due to the exchange of mass and momentum between
the liquid and the gas, respectively. Moreover, a similarity transformation allows transferring the two-dimensional
gas equations for the mass fractions Yk; k = 1, . . . , N of chemical species k and of gas temperature into a one-
dimensional formulation [10, 11]. This yields

ρuy
dYk
dy

= −d(ρVkyYk)
dy

+ ω̇k + Ṡv(δkF − Yk). (3)

The term including the diffusion velocity is calculated as

ρVkyYk = −ρDk
Yk
Xk

dXk
dy

− DTk
T

dT

dy
+ ρYkV

C
y , (4)

where Xk is the mole fraction of species k, Dk is the diffusion coefficient of species k into the gas mixture, DTk is
the thermal diffusion coefficient of species k, and the velocity correction ensuring mass conservation is

V Cy =

N∑
k=1

(
Dk

Yk
Xk

dXk
dy

+
DTk
ρT

dT

dy

)
. (5)

The transport equation for the gas temperature, T , can be expressed as

ρCpuy
dT

dy
=

d

dy

(
λ
dT

dy

)
− ρ

dT

dy

N∑
k=1

(CpkVkyYk) + ω̇T + Ṡe, (6)

where Cp and Cpk denote the specific heat capacity at constant pressure of the gas mixture and of species k,
respectively. λ is the thermal conductivity, and ω̇T and Ṡe are source terms due to chemical reactions and exchange
of energy between the liquid and gas phase, respectively.
The mixture fraction, ξ, is defined as a scalar satisfying the following transport equation

ρuy
dξ

dy
=

d

dy

(
ρDξ

dξ

dy

)
+ Ṡv (1− ξ) , (7)

where Dξ is the diffusion coefficient assumed to be equal to λ/(ρCp), for Lewis number Leξ =
λ

ρDξCp
= 1. Equa-

tion (7) is an extension of the original work by Pitsch and Peters for gas flames [12], which avoids the inconsisten-
cies arising from considering the same diffusion coefficients for all chemical species in the classical derivation of
the transport equation of mixture fraction, but not in the chemical species transport equations.
A transport equation for the gradient of the mixture fraction

gξ =
dξ

dy
, (8)
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can be obtained from the transport equation of the mixture fraction. Inserting Eq. (8) into Eq. (7) yields

ρuygξ =
d

dy
(ρDξgξ) + Ṡv (1− ξ) . (9)

Note that the classical definition of the scalar dissipation rate of the mixture fraction is directly related to gξ

χ = 2Dξg
2
ξ . (10)

Despite this rather simple relation between both variables, Eq. (9) and its transformation into mixture fraction space
are considerably simpler than previous formulations [4] directly obtained for χ. For the transformation of the govern-
ing equations presented above, the following change of coordinate from physical space into mixture fraction space
is introduced

d(·)
dy

= gξ
d(·)
dξ

. (11)

When Eq. (11) is applied to Eqs. (3) and (6), the spray flamelet equations for the mass fractions of chemical species
and of the gas temperature yield

g2ξρ
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(12)

and
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, (13)

respectively, where
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Yk
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+
Ṽkξ
ρYk

, (14)

and

Ṽkξ = −ρDk
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with W denoting the mean molecular weight of the gas mixture.
The spray flamelet equation for the gradient of the mixture fraction, the major objective of this work, can be obtained

applying the operator gξ
d (·)
dξ

to Eq. (9). This yields

gξ
d(ρuygξ)

dξ
= gξ

d

dξ

(
gξ
d (ρDξgξ)
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)
+ gξ

d
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(
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)
, (16)

which can be transformed into

g2ξρDξ
d2gξ
dξ2︸ ︷︷ ︸
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= gξâ︸︷︷︸
IIgξ

−g3ξ
d2(ρDξ)
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d
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)
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. (17)

Term Igξ corresponds to a diffusive term, whereas IIgξ is the only term balancing the equation in gas flames when
the product ρD is assumed to be constant [6], which is equivalent to neglect term IIIgξ . Finally, IVgξ comprises
evaporation-related effects. It is important to note that, provided the source terms Ṡv and Ṡe are known, the only
unclosed term in the SFE is

â =
d(ρu)

dy
= gξ

d(ρu)

dξ
. (18)

For the closure of this quantity, the stream-like function [10]

f(ξ) =

∫ ξ

0

ur
r
dξ′, (19)

is used which can be inserted into the mass balance equation, Eq. (1), to obtain

2ρf ′ + gξ
d(ρuy)

dξ
= Ṡv, (20)
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where Eq. (11) has been employed. After rearrangement and integration, Eq. (20) yields

uy =
1

ρ

[∫ ξ

0

Ṡv − 2ρf ′

gξ
dξ∗ + (ρuy)ξ=0

]
. (21)

Introducing Eqs. (19) and ( 21) into Eq. (2) yields

gξ
d

dξ

(
µgξf

′′) = [∫ ξ

0

Ṡv − 2ρf ′

gξ
dξ∗ + (ρuy)ξ=0

]
gξf
′′ + ρ(f ′)2 − ρ0a

2 − Ṡm
r
, (22)

where the Euler equation has been used to express dp/dr as a function of the outer flow velocity and the strain rate,
a [10]. This approach is similar to the one introduced by Continillo and Sirignano [10] who have shown that the term
Ṡm
r

is independent of r and, therefore, Eq. (22) is one-dimensional in mixture fraction space and it can be solved to

obtain f ′, which can be then replaced in Eq. (20) to calculate â as

â = gξ
d(ρuy)

dξ
= Ṡv − 2ρf ′. (23)

In the next section, the framework for the validation and the analysis of the SFE is presented.

Assessment Framework and Closure of the SFE
For the validation of the SFE, numerical simulations of steady axi-symmetric ethanol/air counterflow flames are
performed. For this purpose, a two-dimensional Eulerian/Lagrangian formulation is adopted. Following Continillo
and Sirignano [10], the gas equations are transferred into a one-dimensional system for the gas-phase equations
by means of a similarity transformation as provided above and it is used as extended by Gutheil and Sirignano [11]
for variable density and detailed transport and detailed chemical reactions. The present detailed chemical reaction
mechanism for ethanol/air consists of 38 species and 337 elementary reactions [13]. Heating and evaporation of
spherically symmetric single-component droplets in a mono-disperse spray are considered, where droplet motion
is formulated in a Lagrangian way [10, 11] and evaporation is described by means of the Abramzon-Sirignano
model [14].
In the following, three different counterflow flames are considered. First, a gas flame is simulated where a pure air
stream injected from the left side of the configuration is directed against a pure gaseous ethanol stream injected
from the right side, which is established as a base case (Flame A). This flame is then perturbed injecting a spray
from the air side of the configuration, which consists of liquid fuel droplets of 20 µm of initial radius. Liquid fuel/air
equivalence ratios of 0.2 and 0.8 are considered (calculated neglecting the gaseous fuel from the opposed stream)
and the resulting flames are denoted as Flame B and Flame C, respectively. For all the simulations, the same
gas phase conditions are employed with a strain rate of 55/s and an air inflow velocity of 0.75 m/s, both conditions
evaluated at the air side of the configuration. The temperature at the boundaries is 300 K and, for the spray flames,
the initial droplet velocity and temperature are equal to the gas phase conditions at the inlet. These conditions
are selected because they systematically illustrate how the spray affects the gas flame structure, with particular
emphasis on the effects of increasing the liquid fuel/air equivalence ratio. The present choice also assures that the
spray flames under consideration do not exhibit a non-monotonic behavior of the mixture fraction as in previous
studies, which allows solving the SFE in a mixture fraction space which extends from zero to unity. Additionally,
these monotonic profiles of mixture fraction assure a unique correspondence of the gas temperature as well as the
mass fractions, which facilitates projecting the counterflow solutions into the mixture fraction space for comparison
and closure of the SFE.
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Figure 1. Gas temperature (top left), relative droplet radius (symbols) and mixture fraction (dashed lines) (top center), CO2 mass
fraction (top right), CO mass fraction (bottom left), mass evaporation rate (bottom center) and â (bottom right) for Flames A, B

and C.
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The influence of varying the equivalence ratio in the outer flame structure is displayed in Fig. 1, where profiles
of the gas temperature, the normalized droplet radius, CO2 and CO mass fractions, as well as mass evaporation
rates and the gradient of the product of gas velocity and gas density are shown for all flames. It can be observed
that increasing the equivalence ratio generates a displacement of the peak of the gas temperature profile to the
left side of the configuration (see Fig. 1 top left), which can be attributed to the higher amount of fuel available in
that region. Moreover, the profile of the gas temperature becomes considerably wider as the equivalence ratio is
increased. These effects promote evaporation and, consistently, they reduce the droplet penetration (see Fig. 1
top center) into the counterflow configuration. The displacement of the maximum temperature to the left side of
the configuration also leads to a displacement of the peak of CO2, as can be seen in Fig 1 (top right). This is
an expected phenomenon, since the conversion of CO into CO2 takes place mainly near to the high temperature
region. Finally, a considerably increment of the total amount and the maximum value of CO is found when the
equivalence ratio is increased, which is indicated by the peak value located at the low temperature region in the
right side of the flame. This occurs since the energy available in that region is limited and, therefore, CO cannot be
converted into CO2 there.
The different strategies for the closure of the SFE are as follows. In particular, source terms that account for
the mass, momentum, and energy exchange between the phases, Ṡv, Ṡm, and Ṡe are unclosed quantities. For
their closure, the projections into the mixture fraction space of the profiles obtained in the counterflow simulations
presented in the previous section (see Fig. 1 (bottom center)) are employed. For the closure of â = d(ρuy)/dy in
the SFE, the following three different approaches A1-A3 are considered:

A1: The gas velocity obtained by means of Eq. (23) is employed to calculate â. This approach is expected to fully
recover the counterflow flame structures.

A2: A constant value of â = âst is used, where âst is the value of â at the stoichiometric value of the mixture fraction
in the counterflow simulation. This value is chosen because there has been evidence that the conditions at
stoichiometry are of importance for gas flames [1].

A3: Again, a constant â is adopted, which is assumed equal to its value at the left boundary (air side) of the
counterflow configuration (â = â−∞). This approach is adopted because the value of â at this location is
typically known a priori, which is not the case in model A2.

Analysis of Fig. 1 (bottom right) shows that the difference between âst and â−∞ increases with increased equiva-
lence ratio, which is due to the corresponding reduction of âst explained above. Therefore, the best performance of
A3 should occur for flame A, and this approach is expected to deteriorate when the spray gains in relevance.
In the remainder of this paper, the results obtained by solving the SFE with the three approaches A1, A2, and A3 will
be denoted by subscripts "1", "2" and "3". In the next section, the numerical results will be compared and discussed.

Results and Discussion
A comparison of the different profiles of gξ using the different approaches A1, A2 and A3 is presented in Fig. 2 for the
flames under consideration. Here, the subscript R corresponds to reference values obtained from the counterflow
flames introduced in the previous section. An excellent agreement between the reference profiles and the profiles
obtained by means of A1 is found for all cases, which confirms the validity of the spray flamelet equations and
justifies the use of A1 as the reference case in the remainder of this section. A2 and A3, on the other hand,
consistently lead to poor predictions of gξ through almost the entire flame structure. In particular, A2 results in an
under-prediction, whereas A3 shows over-prediction. It is observed, however, that A2 performs better at low values
of the mixture fraction where the reaction zone is located, and, therefore, this approach is expected to lead to better
predictions of the chemical reaction zone compared to A3.
Regarding the influence of evaporation on the gradient of the mixture fraction, it is found that increasing the equiv-
alence ratio tends to a reduction, which is explained by the more homogenous mixing that can be achieved when
evaporation plays a role. This leads to a higher stability of the flame and is consistent with the higher strain rates
required for extinction of spray flames in comparison with their gaseous counterpart [13].
Despite the big differences observed for the gradient of the mixture fraction, a comparison of the gas temperature
profiles obtained by the different approaches reveals a better agreement for flames A, B, and C (see Fig. 3), where
A2 performs considerably better than A3. Since gξ is well reproduced for A2 in the low mixture fraction region, the
good temperature prediction obtained in this zone with this approach is not surprising. For A3, however, a slight
under-prediction of the gas temperature is observed in this region, which is due to the higher values of gξ that
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Figure 2. Profiles of gξ for Flame A (left), Flame B (center) and Flame C (right).
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Figure 3. Profiles of gas temperature (top), budget of terms in temperature flamelet equation using A2 (center) and using A3
(bottom) for Flame A (left), Flame B (center) and Flame C (right).
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Figure 4. CO profiles (top), budget of terms in CO-flamelet equation using A2 (center) and using A3 (bottom) for Flame A (left),
Flame B (center) and Flame C (right).

are obtained in this zone. Specifically, this phenomenon occurs because an over-prediction of the gradient of the
mixture fraction implies a higher diffusion of energy from the reaction zone to the surroundings and leads therefore
to a reduction of the local gas temperature. This is consistent with the classical gas flamelet theory [1], which
explains how gas temperature is reduced when the value of the scalar dissipation rate at the stoichiometric point is
increased.
Regarding the physical processes dominating the temperature flamelet equation, major differences are found for A2
and A3. For A2, it can be clearly seen, cf. Fig. 3, how evaporation reduces diffusion and increases the value and
relative importance of term IV. This is especially notorious for Flame C, and consistent with previous findings [3].
For A3, the dominant physical processes are not changed by evaporation and the energy source due to chemical
reaction is always mainly balanced by diffusion. This rather counterintuitive result is explained by the over-prediction
of the contribution of the diffusive term obtained with A3, which makes term IV to appear small in comparison,
reducing the relative importance of evaporation effects on the flamelet equation for the gas temperature. This result
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shows that, even when acceptable gas temperature predictions are obtained by means of A3, a poor description of
the involved physics is achieve with this approach.
Finally, Fig. 4 shows the profiles of the mass fraction of CO for the flames under consideration. It is found that good
predictions are obtained for Flame A, whereas still acceptable values are calculated for Flame B. For Flames C,
however, only poor predictions are obtained. To understand the reason for this, it is again necessary to analyze
the budgets of the CO flamelet equations, which are also presented in Fig. 4 for A2 (center) and A3 (bottom),
respectively. It can be seen that chemical reactions take place in an extended zone between values of the mixture
fraction of zero and 0.4, which extends well beyond the region in which gξ may be properly reproduced. The poor
prediction even worsens when the equivalence ratio is increased, since the relative error with which the gradient
of the mixture fraction is predicted, increases with the equivalence ratio. Finally, for the chemical species CO,
the underlying physical and chemical processes taking place simultaneously are not properly identified using A3,
confirming the superiority of A2 over A3.

Conclusions
The use of the gradient of the mixture fraction, gξ = dξ/dy, has been proposed for closing the scalar dissipation
rate in the spray flamelet equations (SFE), and a transport equation for this new quantity has been derived and
transformed into the mixture fraction space. For this purpose, the SFE have been re-derived in terms of gξ. These
equations are validated in the context of several laminar ethanol/air counterflow flame structures. In particular,
a pure ethanol/air gas flame (Flame A) was used as a base case and three additional flames were generated
by perturbing the air side with a mono-disperse spray and increasing the equivalence ratio at the air side of the
configuration (Flames B to D). After this, two additional flames were generated by increasing the initial droplet sizes
of the monodisperse spray (Flames E and F).
In the newly proposed SFE, two types of unclosed quantities are found: The spatial gradient of the product of gas
density and velocity â = d(ρuy)/dy as well as evaporation-related source terms. Two different approaches were
proposed for the closure of â: Introducing a stream-like function and using the global mass and axial momentum
balance equations to derive and expression for it (Approach A1) and assuming a constant value for â. Specifically, it
was proposed to use the value of âst at stoichiometric mixture (Approach A2) and at the air side of the counterflow
configuration â−∞ (Approach A3). For the closure of the evaporation-related source terms, profiles obtained from
the numerical simulations in physical space were employed. The different closure alternatives were evaluated in
terms of their capability of predicting the profile of gξ and the spray flamelet structure of the different reference
counterflow flames.
The results show that approach A1 can perfectly reproduce both, the spray flamelet structure and the contribution of
the different terms appearing in the SFE for all flames under study, which clearly highlights its advantages over A2
and A3. Approach A2 can adequately capture the relative importance of the main physical phenomena occurring in
the reference counterflow flames, even when the flame structure itself is not always well-predicted by this approach.
Particularly, A2 fails for situations in which evaporation takes place far away from the main reaction zone. Finally,
A3 was found to be incapable of properly capturing the influence of evaporation and generally led to inappropriate
predictions.
The present results contribute towards the formulation of a comprehensive and self-contained spray flamelet theory.
However, there is still a need for proper closure of the evaporation-related source terms appearing in the SFE in
mixture fraction space, which will be the focus of future work.
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