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Abstract

When a liquid stream is injected into a gaseous atmosphere, it destabilizes and continuously passes through dif-
ferent states characterized by different morphologies. Throughout this process, the flow dynamics may be different
depending on the region of the flow and the scales of the involved liquid structures. Exploring this multi-scale, multi-
dimensional phenomenon requires some new theoretical tools, some of which need yet to be elaborated. In the
present study, an innovative general framework is established by transposing the machinery of two-point statistical
analysis to a relevant metric of liquid-gas flows (the liquid volume fraction). This allows distinguishing the transport
of liquid which occurs in geometrical space (i.e. from one position in the flow to the other) and the one occurring
in scale space (e.g. from large to small scales). These equations are exact and do not rely on any particular as-
sumptions. The notion of scale is explicit and unambiguously defined. They further apply to the entire flow field,
from the injection to the spray dispersion zone and irrespectively of the flow configuration or regime. This new set
of equations is here invoked to characterize the air-assisted atomization of a planar liquid layer simulated by means
of Direct Numerical Simulation using the ARCHER code.
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Introduction

According to Villermaux [22], there exist three classes of theoretical elaborations for describing the atomization of
liquid streams: the sequential cascade models, the aggregation models, and the maximum entropy formalism. The
first class of elaborations dates back to Kolmogorov [11] and considers the atomization process as a successive
reduction of 'mother drops’ into a hierarchy of smaller 'daughter drops’. This approach in its original and modern
versions [4] thus conceptualizes the atomization process as a cascade mechanism, analogous to single fluid tur-
bulence [9], where the sense of evolution is directed towards small scales. The second class of models is due
mainly to the work by Villermaux and co-workers [23, 12]. They postulated that droplets emanate from the rupture
of detached ligaments which are formed during the primary atomization process. These ligaments are assumed to
be virtually constituted of spherical blobs, which successively aggregate yielding a given droplet size distribution in
the spray. Hence, opposite to the cascade models, the aggregation scenario indicates that the transfer among the
different scales is directed towards the large scales. Finally, the last class of theory relies on the Maximum Entropy
Formalism [18, 3]. The idea is to consider, again, the liquid as being constituted as a set of elementary bricks and to
compute the most probable distribution of disjoint clusters given some constraints that are imposed on the system.
In the Maximum Entropy Formalism, the process of cluster formation is done in one step and there is no explicit
description of the underlying dynamics or kinematics.

All aforementioned models emphasize the cornerstone notion of constitutive scale (mother and daughter drops,
blobs). However, in both vision, this notion is invoked ex nihilo and lacks of robust mathematical foundation. If a
typical scale were to be unambiguously defined, it could only correspond to the diameter of a sphere (ligament) even
though the liquid structures are generally far from being spherical (cylindrical) in the secondary atomization zone.
Consequently, the ambiguity in the definitions for the constitutive scales implies notably different postulates for the
direction of transfer in scale-space, although it remains very unclear in which particular direction, if one were to exist,
the evolution preferentially occurs [5]. Another direct consequence is that predictions of such theories can be tested
mostly in the very far field of the spray, where droplets are spherical for the 'drop-size’ to be defined and measured.
Therefore, they cannot be validated in the region of the flow where the processes they are describing are acting.
Last but not least, these theories cannot conclude about the existence of a scale, as numerically evidenced in [13],
below which the atomization process may stop. For example, the cascade model implicitly considers atomization at
large Weber numbers (the surface tension force tends to zero) in which case the atomization process a priori never
ceases and droplets of infinitely small size can possibly be created [4]. To circumvent this limitation in the model, the
atomization process is artificially interrupted when drops become smaller than a critical value based on dimensional
arguments.

Besides two-phase flows, the concept of hierarchized scales among which energy is transferred has been exten-
sively explored in the context of single phase turbulent flows. This idea dates back to Richardson [16] and has
deeply inspired von Karman & Howarth [8] and Kolmogorov [10] who were first to derive the transport equations for
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the two-point statistics, i.e. correlation or structure functions of observables such as the velocity field. Yaglom [24]
derived similar equations for a passive scalar such as temperature. Considering an analysis of the relevant metrics
(e.g. velocity, temperature, concentration) not only at one point but at two points in space allows to mathematically
define the notion of scale as the straight distance between the two points considered. In the last two decades,
generalizations of the Karman-Howarth-Kolmogorov or Yaglom equations, have emerged where the assumption of
statistical homogeneity and isotropy are relaxed [2, 6, 19]. In addition to unambiguously define the notion of scale,
the main benefit of such two-point equations is that they allow to evaluate and distinguish the processes (production
/ diffusion / transfer) occurring in the geometrical space (i.e. from one position in the flow to the other) from that
taking place in scale space (from e.g. large to small scales).

In the present study, the machinery of two-point statistical analysis is adapted to a relevant metric of two-phase
flows with the goal of exploring the transport of liquid in both scale and geometrical space. The scalar of interest is
here the liquid volume fraction. It is linked to the the volume-of-fluid which is widely used in numerical simulations
to characterize the evolution of the liquid-gas interface [7, 17]. Our objectives in deriving such a new framework
is to provide insights into (i) the direction and amplitude of the transfer among the different scales during liquid-
atomization, (i) the existence of a cut-off scale below which atomization ceases and (iii) the effect of different
physical parameters (surface tension, viscosity and density, inflow velocity conditions), and the range of scales
over which these parameters have an influence. Only point (i) is addressed here. Although this framework applies
irrespectively of the investigated zone within the flow and independently of the injection regime, focus is shed here
on the air-assisted atomization of a planar liquid layer.

This paper is organized as follows. First, the derivation of the two-point statistical equations for the liquid fraction
field are presented. Second, the numerical simulations used throughout this study are presented. Finally, results of
the application of the new theoretical framework to air-assisted atomization are discussed. Conclusions are drawn
in a last section.

Analytical considerations

The liquid volume fraction ¢ designates the portion of liquid contained within a given volume (generally the mesh
cell). ¢ = 1 if cells contain only liquid, ¢ = 0 if they contain only gas and 0 < ¢ < 1 if a liquid-gas interface crosses
the volume under consideration. An example of such a field function is portrayed in Fig. 1(a). For non evaporating
liquids in incompressible flows, its transport equation reads

Oip+u-Vap=0 (1)

where 0; = 0/dt and V is the gradient operator with respect to the coordinate . The equation for ¢ is therefore
that of a non-diffusive passive scalar. The effect of viscosity and density jumps together with surface tension of the
liquid-gas interface is implicit through the appearance of the velocity field u(x, t).

The algebra for deriving the two-point equations of ¢ is similar to what was presented in e.g. [6, 2] for the velocity
field and is reproduced here. Eq. (1) is first written at a point * and a point =~ arbitrarily separated by a distance
r (see Fig. 1(a))

0t +ut YV st =0 )

where superscript plus (minus) denote the quantity at point ™ (z~). Taking the difference of Eq. (2) between the
two points considered yields

O (¢t —¢ ) +ut V i¢"T —u -V, ¢ =0 (3)

For any quantity 3, we have V_-3%] = V_. 3~ = 0. Using the continuity equation V_ -u* = V__-u~ =0, Eq.
(3) can then be rewritten as

08¢+ Vv - utdp+V - -u"dp=0 (4)

where 68 = 8t — 5~ = g(x*,t) — B(x ", t) is the increment (the difference) of the quantity 5 between the two points
z" andz”. Let X = (z* + =) /2 being the midpoint and » = (2™ — =) the separation vector between =* and
x~ (Fig. 1(a)). The gradient with respect to X and r are then relatedto V - and V. by

V.=V, 4 Vx (5)
Explanations for choosing X and r instead of =t and =~ are given in [6]. Injecting Egs. (5) into Eq. (4) leads to
0t + V- dudp + Vx -oudp =0 (6)
where o3 = % (B* + B7) is the average of the quantity 3 between the two points = and =~. Multiplying Eq. (6)
by §¢ yields
¢ (60)° + Vo - 0u (6¢)* + Vx - ou (5¢)* = 0 )

The quantity under consideration in Eq. (7) is (6¢)?, the squared difference of ¢ between two arbitrary points.
(6¢)2 is non zero only if the liquid-gas interface is present between the two points considered. As a consequence,
(6¢)% (X, r,t) is somehow related to the probability of finding the liquid gas interface between two points separated
by a distance r. At large separations, this probability is larger than for small separations, so that (§¢)° is expected
to be an increasing function of |r|.
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Figure 1. (a) Example of liquid volume fraction field. Dark regions correspond to the liquid-phase and white regions to the
gas-phase The interface is also displayed as black curves. The two-points 2+ and =~ used to calculate increments are
portrayed together with the midpoint X and the separation vector r. (b) Schematic representation of the flux ®, and ® x

Equation for the fluctuating component

Because the flows under consideration are generally turbulent, it is convenient to decompose ¢ and w into a mean
(Reynolds average) and a fluctuating component before proceeding to average. The type of averaging procedure
depends on the flow configuration and will be detailed later. The mean and fluctuating part of the fields under
consideration are given by

O (®a)
u=u+u (8b)

By definition, the averaged fluctuations u’, ¢’ = 0. The equations for (5&)2 and (6¢’)? are obtained multiplying Eq.
(6) by 6¢ and §¢’, respectively, and then proceed to average. For the fluctuating component, one obtains

2 (6¢)° +V,- (5@(&;5')2 + 0w (60')° ) + 2045w - V56

TV - (aﬁ(5¢')2 + 0w (64/)°) + 2800 - Vx65 = 0 )
Eqg. (9) can be formally rewritten as
at(5¢l)2 = -V, &, - Vx - -®x — 1L —IIx (10)
— —_———
Transfer r Transfer X Production r Production X

In addition to a non-stationary term, Eq. (10) reveals two flux terms, in the »- and X -space, respectively. These are
expressed as follows

®,. = 0u(d¢’)’ + ou’ (6¢)° = du (6¢')* (11a)
bx = aﬁ(5¢’)2 + ou’ (5(;5’)2 =ou (5(;5’)2 (11b)

V. and V x are the gradient operator in »- and X -space, respectively. Therefore, V,. - ®, and Vx - ®x are
characteristic of a transfer process occurring in the r- and X-space, respectively. More precisely, the term ®..
represents the flux of the fluctuating quantity (5¢')* from spherical shells S(r, X) (see Fig. 1 (b)) centred at X
with radius r = |r| either to spherical shells centred at the same X but with different radius =’ or within the same
spherical shell but to a different orientation = /. This flux operates with a characteristic velocity du = 6w + du’,
i.e. the sum of mean and fluctuating velocity increments. On the other hand, the term ®x represents the flux
of the fluctuating quantity (6¢')* from spherical shells S(r, X) (see Fig. 1 (b)) centred at X with radius r = |r|
to a spherical shell of same size centered at another point in flow-position space X’'. The latter is driven by a
characteristic velocity cu = ou + ou’, i.e. the sum of mean and fluctuating velocity half sum.

Eqg. (10) also contains two terms which are usually interpreted as some production terms due to gradient of mean
quantities in the »- and X -space, respectively

I, = 26u8¢ - V,6¢ (12a)
x = 20ud¢ - Vxop (12b)

IT,. and ITx characterize the exchanges of energy from the mean field to the fluctuating component. In summary, Eq.
(10) reveals that (6¢/)? changes in time due to (i) a production mechanism associated with statistical inhomogeneity
of mean quantities, and (ii) redistribution through fluxes in both scale-space » and position space X. Contrary to the
well known equation for the scalar field such as temperature or pollutant concentration (i.e. the generalised Yaglom
equation, see e.g. [1, 19]), ¢ is a non diffusive scalar. Therefore, the diffusion term and the scalar dissipation rate
do not appear in Eq. (10). This is a very noticeable peculiarity of the liquid volume fraction.

As per [15], it is also convenient to define the convection velocities w.. x in either the r- or X -space, i.e. du (5¢')* =

w,(0¢")* and ou (§¢')° = wx (5¢')* which allows decomposing the transfer terms as

V.- du(3¢)° = wr - Vi (6¢)% + (6¢')* V- wy (13a)
Vx-ou(6¢)? = wx - Vx(6¢")? + (6¢')°Vx - wx (13b)
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Writing the transfer term in the form provided by Egs. (13) allows highlighting an advection term with convection
velocity w,, x whose sign indicates the direction of the flux (negative/positive when directed towards smaller/larger
scales), and a sink/source term accounting for the non solenoidal character of w,,x. From Eqg. (13) it is then
possible writing Eq. (10) in Lagragian form revealing that variations of (§¢')* along the trajectories of the field wy. x
are due to the combined effect of production II,. x and a sink/source term associated with V.. x - w,, x being non
zero.

To further elaborate on the origin of the source term (6¢')*V, x - wy x, it is worth applying an Hodge-Helmholtz
decomposition to w., x. The velocity w., x can then be decomposed as the sum of a divergence-free (solenoidal)
and a curl-free (irrotational) component. For w, this writes as

Wy = —VpPr+ VA A, (14)
where P. and A, are the scalar and vector potential, respectively. The source term f,. = V,. - w, can thus be
expressed in the form of a Poisson equation, viz. f, = —V2P,. Using Green’s function for Poisson’s equation on

an unbounded space and assuming that f,. decays faster than \r|’1 at large r, the solution for the scalar potential
is given by

P. = jjj Gr(r' =) fr(r")dr’ (15)

G.(r' —r) = {4n|]r' — r|}”", the Newtonian potential, describes the response of the system at scale r to a
point source located at a larger scale ’. A similar interpretation applies to wx in geometrical space. Writing the
sink/source term in the form of a Poisson’s equation therefore suggests that a given scale (or position) interact with
all others scales (positions) through a scalar potential field. The sink/source term in Eqg. (13) therefore contains in-
formation about the non-local character of the interactions between different scales or positions (a similar reasoning
was elaborated as regards to the non-local effect of pressure in incompressible turbulence, see [20] p. 28). In other
words, Eqg. (13) can be seen as a way of decomposing the transfer terms into local and non-local processes. The
left-most term on RHS of Eq. (13) characterizes local interactions between two neighbouring scales » or positions
X . Such interactions are made through a local transport process. On the other hand, the rightmost term on RHS of
Eqg. (13) emphasizes that there exists a potential field P, x which allow separated scales (or positions) to interact.

Details of the numerical simulations

The different terms of Eq. (10) are quantified from Direct Numerical Simulations (DNS) data using the ARCHER
code [14]. This study has benefited from the latest developments of the code, notably the Rudman type solver
allowing for a consistent transport of mass and momentum. The reader is referred to [21] for more details. The flow
configuration is that of a planar liquid layer being sheared by a gas stream. The liquid and gas properties correspond
to that of water and air at ambient pressure. The liquid was set to be at rest while the gas velocity is v, = 7.5 m.s™"
flowing the z direction. The calculation domain is L, x L, x L. = 8 x 4 x 4 cm® in the streamwise, vertical and
spanwise direction respectively, and the mesh size consisted of N, x N, x N, = 512 x 256 x 256 cells. The liquid
layer is L, /2 thick. Close to the liquid-gas interface, an error function profile for the streamwise velocity is prescribed
with a vorticity thickness of 1.15 mm. This was set so that the most unstable wavelength of the Kelvin-Helmholtz
instability is expected to be half of L, and the spanwise instability has a wavelength of about L./6. To facilitate
the destabilization of the liquid layer and consequently reduce the overall computational time, we superimposed to
the liquid-gas interface a small sinusoidal perturbation with period L, /2 and L./6 in the streamwise and spanwise
directions, respectively. Periodic boundary conditions are used in the streamwise and spanwise direction. A no-slip
boundary condition is applied to the bottom frontier while an outflow condition is used at the uppermost boundary
of the calculation domain.

The flow is statistically homogeneous along the = and z directions. One-point and two-point statistics are thus
averaged along these directions, i.e. the appropriate average operation here writes

B= L:LZJ Bdzdz (16)

The mean flow is therefore given by u(zx,t) = (u(y,t),0,0) and ¢(x,t) = ¢ (y, ).

Results and discussion

A snapshot of the simulation results is shown on Fig. 2. Noticeable is the multiscale nature of the liquid-gas interface
which manifests in a variety of different liquid structures, e.g. three dimensional corrugations, detached ligaments
and droplets. In this particular flow, droplets are known to be created from the rupture of ligaments which are ejected
from the liquid bulk and stretched by the gas flow field [12]. Because stretch is responsible for the elongation of
ligaments, one can therefore expect the transfer of (d¢’)? among the different scales to be a priori directed in the
direction of large scales. Eq. (10) allows to provide greater details on this mechanism.

Here, given the symmetry of the flow, Eq. (10) reduces’ to a problem in 5 dimensions with argument list (Y, »,¢). To
reduce further the problem dimensionality, it is convenient to consider averaging the different terms of Eq. (10) over
a sphere of radius r = |r| [6], viz.

@5 X = () [[[ s x 000 (17)

|r|<r
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Figure 2. (left) Volume rendering of the liquid structures and (right) slice of the velocity magnitude and liquid-gas interface at a
time t = 1.76 L, /ugy. The flow is directed from left to right.
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Figure 3. (a) Different terms of Eq. (18) normalized by u4/L.. (b) Decomposition of the r-transfer term into an advection and
non-solenoidal term Eq. (13). (c) Decomposition of the r-transfer term into a mean and fluctuating component. Results are for
t =1.76Lz/ugandY =0

which, for the particular flow investigated here, leads to

(07 ), = =2 (@ D)~ (Vyby); — Iy — Uy, (18)

where JS denotes the boundary of the averaging sphere and r/r is the outwardly pointing normal to S. Therefore
®,. - r/r is the radial flux crossing JS. By averaging over a sphere, the problem of VOF transport as given by Eq.
(18) now depends on the vertical axis Y, the probed scale given by the sphere radius r and time. Note that the X-
transfer and production term reduce to the ones in the vertical direction since, by homogeneity, Vx3 = Vz3 = 0.
In this form, one can now assess the direction and amplitude of the different mechanisms acting on the VOF field.
For example, (®. - /r)ss > 0 means that the flux is directed towards large scales. Similarly (Vy - ®y)s > 0 means
that at a given plane perpendicular to Y, energy is transferred in the direction of increasing Y. Same reasoning
applies to the productions terms.

The different terms of Eq. (18) at Y = 0 (i.e. on the center plane of the flow, y = L,/2) and time ¢t = 1.76L,/uq
are displayed on Fig. 3(a). One notes that the only positive term which thus acts as a gain in the budget is the
r-production term. The latter peaks at a scale » ~ 30 dx and tends to zero at either large and small scales. This
indicates that mean quantities is feeding the fluctuating component of the liquid volume fraction field. The other
significant term is the »r-transfer which appears to be negative (a loss of energy) irrespectively of . Therefore, on
average, part of the energy available at a given scale is lost by being transferred towards large scales. This results
confirms that at this position within the flow, liquid structures are positively stretched. The scale r at which the r-
transfer term is maximum is about 20 dx which, interestingly, corresponds roughly to the size of ligaments observed
in Fig. 2. Third, the transfer of energy in geometrical space (—(Vy ®y)) is also negative and represents about
half the contribution of the r-transfer term. In other words, the energy transferred towards planes > Y is larger
than the one received from planes < Y, i.e. on average energy is transferred vertically. Finally, the Y'-production
term (— (Ily)s) is negligible. The sum of all aforementioned contributions should equate the time derivative term
for Eq. (18) to be verified. Here, comparing the dt-term to the RHS Eqg. (18) on Fig. 3(a) reveals that the budget
is very closely satisfied. This is a very nice test to assess the appropriateness of a DNS. Any departure from this
budget indicates that either the resolution or the numerical method is inaccurate. To summarize, the dt-term in Fig.
3(a) reveals two distinct behaviour. At large scales (i.e. r > r* ~ 15 dz), the dt-term is positive and the energy is
increasing due to the prominent role of the production mechanism. At small scales (i.e. r < r* ~ 15 dz), the dt-term
is negative and energy is lost through a transfer process towards larger scales (positive stretch) and towards planes
of greater altitude.

On Fig. 3(b) is displayed the r- and Y-transfer terms once decomposed into a pure advection and a sink/source
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Figure 4. Different terms of the budget of ( (6¢’)2 ) (black filled contours) in the (Y, r) plane at atime ¢t = 1.76 L, /u,. Are
s g

displayed as contours (a) the r-Transfer term, (b) the Y'-Transfer term, (c) the r-Production term, (d) the Y'-Production term, (e)
the dt term and (f) the RHS. The dashed red contour corresponds to r, Y at which the dt-term is zero. Terms are normalized by
ug/Lg

term as given by Eq. (13). In scale space, one notes on Fig. 3(b) that the advection mechanism is positive at
small scales meaning that energy is advected in the direction of smaller scales. On the contrary, the sink/source
term is positive with a much higher contribution. As far as the Y-transfer term is concerned, it appears that only the
sink/source term contribute, the advection term wy being negligible. One immediate conclusion is that non-local
interactions predominates in this flow.

Finally, one should further consider the decomposition of the r-transfer term into a contribution due to the mean and
fluctuating flow field, respectively (see Eq. (11)). Note that such a decomposition is irrelevant for the Y -transfer since

0T = 0 and thus ow (6¢')* = v’ (6¢')*. Results are presented on Fig. 3(c). In this flow field, inhomogeneity of the
mean flow field is stronger than that of the fluctuating counterpart. As a consequence, it is not surprising to observe
that the transfer term is dominated by the contribution of the mean flow field. Another interesting observation can
be drawn by comparing Fig. 3(b) and Fig. 3(c). Indeed, it appears that at small scales (r < 20dzx), the r-advection
term in Fig. 3(b) closely matches the fluctuating contribution to the transfer in Fig. 3(c), while the source term in
Fig. 3(b) is similar to the mean velocity transfer term in Fig. 3(c). This means that on average, the mean flow
field is responsible for the elongation of liquid structures while turbulent fluctuations are more prone to accentuate
a cascade of energy towards smaller scales. Second, this observations indicates that non-local interactions are
carried by the mean field while turbulent fluctuations are responsible for local transfers of energy.

Eqg. (18) is now analysed at different planes Y and as a function of the sphere radius r. In Fig. 4(a-f) are portrayed
the scale 'energy’ ( (§¢’)2 )s and the different terms which constitute Eq. (18). Also represented as the red dashed
line is the scale r* (Y") for which the time derivative term is zero. The dt-term is negative (positive) for r < r* (r > r*
). As it was noticed earlier for Y = 0, the range of scales over which energy decays (r < r*) is dominated by the
r- and Y-transfer term. This region (—20 dz < Y < 20 dx, © < r*) is therefore characterized by a strong positive
stretch (Fig. 4(a)) and strong vertical flux (Fig. 4(b)). It is further worth noting that for Y > 20 dz, the r-transfer
process is positive, revealing that energy cascades towards smaller scales. The r-production term (Fig. 4(c)) is
positive throughout the domain, with a peak value located around the center plane of flow and a scale » ~ 30 dz.
For scales » > r*, this term represents the prominent contribution. Here again, comparing Figs. 4(e) and (f) shows
that Eqg. (18) is very nicely satisfied.

The application of the spherical average has virtually hidden the processes (transfer, production) that may have
occurred between different orientations of the vector r. This point is thus further addressed now. For this purpose
we plot in Fig. 5 the energy content of the fluctuating field (6¢’)2? and the direction and amplitude of the convection
velocity w,, x in some different sub-manifolds. These figures reveal the very complex nature of energy transfer in
this particular flow field. The strong inhomogeneity of the flow in Y-direction induces a strong anisotropy of energy
transfer, i.e. statistics depends on the orientation of the separation vector ». In Fig. 5(a-c), we observe that a
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Figure 5. Slices of (6¢/)? (black filled contours) and w,., x (streamlines) in (a) the (r.,ry, 0, 0) plane, (b) the (r¢,0,7-,0) plane,
(c) the (0,7y,r2,0) plane, (d) the (r4,0,0,Y) plane, (e) the (0,r,,0,Y) plane and (f) the (0,0, r.,Y") plane. Streamlines are
coloured by the magnitude of w,. x

large amount of energy is transferred towards large scales, especially in the r, and r, directions. As stated earlier,
this is representative of the elongation of liquid structures in these particular directions. The streamlines plotted in
Fig. 5(a) also show that a significant part of the energy transfer is associated with a tilting of liquid structures in
the clockwise direction, i.e. structures being stretched vertically rotate and tend to align with the r, axis. Finally,
Figs. 5(d-f) indicates the fluxes passing through different vertical planes for different orientations of the vector r. It
is observed that the vertical flux is significant in regions corresponding to Y > 10 — 30 dx, i.e. the region where
the Y- and r-transfer terms contribute positively. In the (Y, r,) plane (Fig. 5(a)) streamlines are directed towards
smaller scales. This is interpreted as being representative of the contraction of ligaments and/or the break-up of
such ligaments into droplets.

Conclusions

With the aim of exploring the multiscale nature of turbulent two-phase flows, a new theoretical framework inherited
from the single-phase turbulence community [1, 2, 6, 8, 15] is proposed. It relies on the liquid volume fraction
transport equation which is written at two-points arbitrary separated by a distance ». By doing so, the transport of
liquid is shown to depend on a transfer and a production process which act together and concomitantly in physical
space (i.e. from one position in the flow to the other) and in scale space (e.g. from large to small or vice-versa). We
have also pointed out the co-existence of local and non-local interactions between different scales and positions.
This new framework is exact as long as the flow remains incompressible with no-phase change. It is therefore a
nicely tailored tool to appraise the appropriateness of a given numerical simulation method and resolution. The
notion of scale is explicit and unambiguously defined. It applies to the entire flow field, from the injection to the
spray dispersion zone and irrespectively of the flow configuration or regime. It allows exploring notably the direction
and amplitude of the transfer among the different scales and the effect of different physical parameters (surface
tension, viscosity and density, inflow velocity conditions), and the range of scales over which these parameters
have an influence. Consequently, transposing the two-point statistical analysis to ¢ appears particularly promising
for providing insights into the complex physics of liquid atomization. Note however that this framework is only an
exploratory tool, but is incapable of predictions as the sequential cascade [4, 11], the aggregation [23, 12] or the
maximum entropy [18, 3] phenomenologies can provide. The reason is that Eq. (10) is not closed, i.e. the transport
of second-order statistics depends on higher order terms.

Here, a DNS dataset of a planar liquid layer being sheared by a gas stream is used to quantify the different terms
of the new two-point equation. It is archetypal of a type of atomization configuration generally referred to as the
air-assisted atomization process. This particular flow is statistically symmetric (homogeneous) in the spanwise and
streamwise direction so that the full set of equations relies on a 5 dimensional manifold.

The most important conclusion to be drawn is that the transfer of liquid between different scales can be either positive
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(towards small scales) or negative (large scales) depending on the probed scale and vertical plane. Negative
transfer is here attributed to a positive stretch of liquid structures (elongation), positive transfer corresponding to their
contraction or break up. Therefore, there exist some region in the flow and some scales complying predominantly
either with the cascade scenario [4, 11], or with the aggregation scenario [23, 12]. It is also worth pointing out
the role of production of liquid volume fraction fluctuations associated with the correlation between the vertical
component of the velocity field and the ¢ field. This term dominates over a wide region of the flow. Finally, exploring
the nature of energy fluxes within different sub-planes of the full manifold have allowed us emphasizing the tilting
process within different orientation of the separation vector ». This process is interpreted as being representative of
the rotation of liquid structures.
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