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Abstract
We present a temporal stability analysis of a viscoelastic liquid jet. Pure-deformation initial conditions are imposed
and the viscoelastic liquid is represented by an Oldroyd-B model. The analysis is performed up to second-order,
with the small parameter being the dimensionless initial deformation amplitude of the imposed mode. The jet
problem depends on four other dimensionless numbers: an Ohnesorge number, two Deborah numbers built on the
characteristic times of the fluid model and the dimensionless wavenumber of the imposed mode. The results are
compared to the Newtonian case, recently treated in the literature, that is retrieved by the identity of the two Deborah
numbers. It is found that the first-order dispersion relation admits an additional solution that is associated to a
decaying mode. Three behaviours are predicted according to the position of the wavenumber with respect to the cut-
off wavenumber kc = 1, that is unchanged by viscoelasticity, and a critical-oscillation wavenumber k∗ that depends
more on the Ohnesorge number than on the Deborah numbers: growth without oscillations for 0 < k ≤ k∗, growth
with oscillations for k∗ < k < kc and damping with oscillations for k ≥ kc. Concerning the second-order solution, it is
found that the Poisson equation for the second-order pressure admits an additional contribution containing products
of modified Bessel functions with different arguments, that requires a polynomial approximation to be solved. The
second-order solution is obtained by following the same method as the one used for the Newtonian case, except
that three modes need to be considered instead of two in the Newtonian case.
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Introduction
Viscoelastic liquids are a common type of non-Newtonian fluids. These fluids behave like elastic solids at short
times compared to the longest time of the fluid and like viscous liquids at longer times. Their elastic property, that is
of scientific and industrial interest, is due to a macromolecular structure.
Macomolecular fluids are challenging because their motions cannot be simply described by the Navier-Stokes equa-
tions. The diversity of their structures, the molecular weight distributions and the large number of internal degrees of
freedom make their molecular modelling very different from the one of Newtonian liquids. This leads to a large num-
ber of molecular models in the literature [1]. The most common ones consist in representing the macromolecules
by chains of N springs. In particular, the N=2 case, referred to as the elastic dumbbells, is very convenient to use
as it minimises mathematical complications and is often sufficient to predict macroscopic behaviours.
The theoretical description of a fluid flow is not only challenging when the fluid model is not Newtonian, but also
when the geometry is not planar. These two difficulties have been put forward by Yarin in his seminal book [2]. In
the case of a liquid jet, the cylindrical geometry adds a nonlinearity in the equations with respect to the spatial radial
variable, generating Bessel functions in the solutions.
The weakly nonlinear stability analysis of a Newtonian jet was recently treated by Renoult et al. [3] following the
work of Yuen on the inviscid case [4]. Here, we propose to extend the study to the case of a Hookean dumbbells
viscoelastic fluid. The assumptions and notations of the problem are first given. The problem is then formulated in
dimensional and dimensionless equations. The method of solution is briefly recalled as it is the same as the one
deployed for the Newtonian case [3]. The equations and solutions are finally presented for the two first orders of the
analysis. The article ends with a conclusion.

The formulation of the problem
We study the temporal stability of a viscoelastic liquid jet in a gaseous phase. The following assumptions are made:

• The jet is of infinite length.

• The jet is axisymmetric.

• The jet is initially at rest.

• The gas phase has negligible density and viscosity compared to the ones of the liquid phase.

• The liquid phase is incompressible and is represented by the Oldroyd-B rheological model.

• The surface tension between the two phases is constant.

• Gravity is not taken into account.
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• The perturbation is varicose, of small-amplitude and single-mode.

The axisymmetric problem is described by cylindrical coordinates in the azimuthal symmetry plane (O, er, ez).
The jet evolution is characterised by three space- and time-dependent quantities: rs(z, t) the jet surface position,
p(r, z, t) the liquid pressure and v(r, z, t) = u(r, z, t)er + w(r, z, t)ez the liquid velocity field. The flow variables
are parameterized by 8 constant parameters: a the radius of the undisturbed jet, ρ the liquid density, µ0 the liquid
zero-shear viscosity, λ1 the liquid relaxation time, λ2 the liquid deformation retardation time, σ the surface tension
between the two phases, pG the gas pressure, η0 the small initial amplitude of the perturbation and k the wavenum-
ber of the perturbation. Figure 1 presents a sketch of the jet configuration studied. Note that the mean radius of the
disturbed jet does not equal a. It depends on η0 and its value is derived by applying volume conservation between
the undisturbed jet and the disturbed one at t = 0.
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Figure 1. Sketch of the liquid jet under varicose deformation.

The governing equations
The problem in now formulated in a set of equations for the liquid phase. We distinguish the equations valid at all
points in the liquid bulk, from the jump conditions valid only at the jet surface and from the initial conditions.
The liquid flow is governed by the mass and momentum balance equations. These equations read for r ≤ rs(z, t),
respectively:

∇ · v = 0

ρ (v,t + (v ·∇)v) = −∇p+ ∇ · τ

where τ is the extra-stress tensor representing the liquid response to rates of deformation. Here, τ is related to

the rate-of-deformation tensor D =
1

2

(
∇v + (∇v)T

)
and the vorticity tensor W =

1

2

(
∇v − (∇v)T

)
by the

Oldroyd-B Rheological Constitutive Equation (RCE):

τ + λ1
◦
τ = 2µ0(D + λ2

◦
D)

Note that viscoelasticity can be described by this model only if λ1 > λ2 and that for λ1 = λ2 the Newtonian case
is retrieved. The "◦" operator designates the upper-convected derivative specific to the Oldroyd-B model, which is
defined for all tensors A by:

◦
A = A,t + (v ·∇)A+W ·A−A ·W − (D ·A+A ·D)

The jump conditions correspond to the mass and momentum equations at the free surface. These equations read
at r = rs, respectively:

ρ(v · n− vn) = 0

(p− pG + σκ )n− τ · n = 0

where n(z, t) is the unit normal vector at the surface pointing outwards, vn(z, t) is the normal velocity of a surface
point, κ(z, t) is the local curvature of the surface. The expressions of these three quantities are respectively:

n(z, t) =
∇(r − rs)
|∇(r − rs)|

=
1√

1 + rs,z2

 1
0
−rs,z


vn(z, t) =

−(r − rs),t
|∇(r − rs)|

=
rs,t√

1 + rs,z2

κ(z, t) =
rs,zz

(1 + r2s,z)3/2
− 1

rs(1 + r2s,z)1/2
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The jet is subject to pure-deformation initial conditions. These conditions read:

rs(z, t = 0) = η0 cos(kz) + a

[
1− 1

2

(η0
a

)2]1/2
rs,t(z, t = 0) = 0

Non-dimensional equations
The previous equations are non-dimensionalized using the undeformed jet radius a, the capillary time scale (ρa3/σ)1/2

and the capillary pressure σ/a for length, time, and stress, respectively. The dimensionless governing equations of
the problem are:

1

r
(ru),r + w,z = 0 for r ≤ rs

u,t + uu,r + wu,z = −p,r +
1

r
(rτrr),r −

τθθ
r

+ τzr,z for r ≤ rs

w,t + uw,r + ww,z = −p,z +
1

r
(rτrz),r + τzz,z for r ≤ rs

τ +De1
◦
τ = 2Oh0(D +De2

◦
D) for r ≤ rs

u = rs,t + w rs,z at r = rs

(τ · n)× n = 0 at r = rs

p+ κ− (τ · n) · n = 0 at r = rs

rs(z, t = 0) = η0 cos(kz) +

[
1− η20

2

]1/2
rs,t(z, t = 0) = 0

Five dimensionless numbers appear in the above set of equations. The Ohnesorge number defined as Oh0 =
µ0/(σaρ)1/2 weights the effect of the zero-shear viscosity. The two Deborah numbers De1 and De2 represent
the dimensionless stress relaxation and deformation retardation times of the liquid, respectively. The last two
dimensionless numbers are not related to the nature of the liquid but to the pure-deformation initial conditions. They
are the dimensionless wavenumber k, and the dimensionless initial deformation amplitude η0.

The method of solution
We apply a small-amplitude perturbation method to solve the problem. Here, the small parameter is the initial
deformation amplitude η0 and the development is performed up to second order. To that end, the physical quantities
of the jet flow are expanded in power series with respect to η0 up to second-order as follows:

u(r, z, t) = u1(r, z, t) η0 + u2(r, z, t) η20

w(r, z, t) = w1(r, z, t) η0 + w2(r, z, t) η20

p(r, z, t) = 1 + p1(r, z, t) η0 + p2(r, z, t) η20

τ (r, z, t) = τ1(r, z, t) η0 + τ2(r, z, t) η20

D(r, z, t) = D1(r, z, t) η0 +D2(r, z, t) η20

W (r, z, t) = W1(r, z, t) η0 +W2(r, z, t) η20

rs(z, t) = 1 + η1(z, t) η0 + η2(z, t) η20

To minimise mathematical complications during the solution of the problem, the three equations representing the
jump conditions that are satisfied on the deformed jet surface are rearranged using Taylor expansions, such as:

u(r = rs, z, t) = u(r = 1, z, t) + (rs − 1)u,r(r = 1, z, t) + ...

w(r = rs, z, t) = w(r = 1, z, t) + (rs − 1)w,r(r = 1, z, t) + ...

p(r = rs, z, t) = p(r = 1, z, t) + (rs − 1) p,r(r = 1, z, t) + ...

Since η0 � 1 by assumption, the initial deformation can be approximated up to second order as follows:

rs(z, t = 0) = 1 + η0 cos(kz)− 1

4
η20
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First-order equations and solutions
The first-order set of equations reads:

1

r
(ru1),r + w1,z = 0 for r ≤ rs

u1,t = −p1,r +
1

r
(rτrr1),r −

τθθ1
r

+ τzr1,z for r ≤ rs

w1,t = −p1,z +
1

r
(rτrz1),r + τzz1,z for r ≤ rs

τ1 +De1τ1,t = 2Oh0 (D1 +De2D1,t) for r ≤ rs
u1 = η1,t at r = 1

τrz1 = 0 at r = 1

p1 + η1 + η1,zz − τrr1 = 0 at r = 1

η1(z, t = 0) = cos(kz)

η1,t(z, t = 0) = 0

The above equations are linear with respect to the time variable. We therefore search for complex solutions with
an exponential time dependence under the form: e−α1t where α1 is the first-order mode eigenvalue of the instabil-
ity. The real part of α1 corresponds to the growth rate whereas the imaginary part corresponds to the oscillation
frequency. Given that time dependency of the flow quantities, the first-order RCE becomes:

τ1 = 2
1− α1De2
1− α1De1

Oh0D1 := 2β1Oh0D1 := 2Ohv1D1

This result means that the first-order extra-stress tensor of the viscoelastic fluid model differs from the one of a
Newtonian material only by a multiplying factor β1 that depends on the two Deborah numbers and on the first-order
mode, but not on the spatial variables. The method of solution of the linear problem is therefore formally the same
as in the Newtonian case, treated by Renoult et al. [3], the Ohnesorge number Oh0 being replaced by the modified
Ohnesorge number Ohv1. The first-order jet surface shape, velocity components and pressure thus read:

η1(z, t) = Re
[
η̂1e

ikz−α1t
]

u1(r, z, t) = Re

[
η̂1

((
2k2Ohv1 − α1

) I1(kr)

I1(k)
− 2Ohv1k

2 I1(lv1r)

I1(lv1)

)
eikz−α1t

]
w1(r, z, t) = Re

[
iη̂1

((
2k2Ohv1 − α1

) I0(kr)

I1(k)
− 2Ohv1klv

I0(lv1r)

I1(lv1)

)
eikz−α1t

]
p1(r, z, t) = Re

[
η̂1α1

k

I0(kr)

I1(k)

(
2k2Ohv1 − α1

)
eikz−α1t

]
where l2v1 := k2 − α1/Ohv1 defines a first-order modified wavenumber. η̂1 is an amplitude parameter, I0 and I1 are
the modified Bessel functions of the first kind of order 0 and 1, respectively.
And the first-order dispersion relation is given by:

DR : α2
1 + α1B(α1, k, Oh0, De1, De2) + C(α1, k, Oh0, De1, De2) = 0

with : B(α1, k, Oh0, De1, De2) = −2k2Ohv1

[
1− I1(k)

I0(k)

(
1

k
+

2klv1
l2v1 + k2

(
I1(lv1)

I0(lv1)
− 1

lv1

))]
C(α1, k, Oh0, De1, De2) = −k(1− k2)

I1(k)

I0(k)

l2v1 − k2

l2v1 + k2

which was first presented by Goldin et al. [5], then derived again and examined in more details by Brenn et al. [6].
For De1 = De2, the factor β1 equals unity and this relation reduces to the dispersion relation of a Newtonian liquid
first presented by Rayleigh [7].

The dispersion relation (DR) is solved for a given set of parameters (k, Oh0, De1, De2) by determining the zeros
of the transcendental DR function using the polynomial method described in [8]. This method is based on the
Cauchy’s integral theorem. It is found that the dispersion relation admits four distinct solutions: one identically
zero solution α1 = 0 and three non-identically zero solutions. These latter solutions are continuous with respect
to wavenumber k. One solution is of particular interest: its growth rate cancels at k = 1 whatever the values of
the other three parameters. This solution is denoted α1d and the two others α1sa and α1sb. It should be reminded
that for the Newtonian case the dispersion relation admits only two solutions besides the trivial solution (that is
generally omitted in the previous work). These two solutions correspond to the capillary modes reported in the
work of García & Gonzáles [9]. The fact that an additional solution is found for the viscoelastic case is due to the
eigenvalue-dependency of the modified Ohnesorge number.
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De1 = 1 ; De2 = 0.001 De1 = 100 ; De2 = 0.1
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Figure 2. Growth rate and oscillation frequency versus wavenumber k for the three non-trivial first-order modes for Oh0 = 0.8
and different Deborah numbers.

Figure 2 depicts the growth rate and oscillation frequency of the three solutions (α1d, α1sa,α1sb) versus the wavenum-
ber for two cases differing by Deborah numbers values but choosen to keep the ratio De1/De2 constant. To facil-
itate the reading of the solutions, we shall define two particular wavenumbers: kc the cut-off wavenumber of the
instability and k? the oscillation critical wavenumber. kc is the wavenumber above which the jet is stable, i.e. all
solutions exhibit a positive growth rate (the opposite sign of the one chosen in the formulation of the time depen-
dency in the exponential function). k? is the wavenumber above which oscillations exist, i.e. there are solutions
with non-identically zero oscillation frequencies. In both cases, it can be seen that kc = 1, the unstable mode is
α1d, 0 < k? < kc and the value of k? is slightly different between the two cases. These features remain true when
the Ohnesorge number is varied, except that the dependence of k? is stronger. Following the same analysis as the
one described in García & González [9], we can distinguish three possible behaviours of the viscoelastic jet for the
range of wavenumbers studied here:

• Growth without oscillations: For k ≤ k?, α1sa and α1sb have positive growth rates and α1d has a negative
growth rate. The jet is destabilised by α1d the dominant mode eigenvalue. There are no associated oscillations
since the oscillation frequencies of all the solutions are identically zero.

• Growth with oscillations: For k? < k < kc, α1sa and α1sb are complex conjugates, and α1d remains real
negative. There are oscillations from the two sub-dominant mode eigenvalues α1sa and α1sb.

• Damping with oscillations: For k ≥ kc, the two solutions α1sa and α1sb are still complex conjugates, but α1d

becomes real positive, which indicates the stabilising behaviour of the jet.

In Figure 3, the cut-off wavenumber kc and the critical wavenumber k? are plotted against the Ohnesorge number
Oh0, for De1 = 1 and De2 = 0.001.
We note that the cut-off wavenumber always equals 1. The value of k? is less than the cut-off wavenumber for
all Ohnesorge number, and decreases by increasing Oh0. This decrease is less dramatic for large Ohnesorge
numbers. Nonetheless, there seems to be either a plateau or a discontinuity around Oh?0 = 0.2, on which we are
still investigating.
From others of our results, not reported here, we observed that decreasing the ratio De1/De2 does not impact the
values of the cut-off wavenumber, and the critical Ohnesorge number Oh?0 seems to have the same value. The
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dependency of k? on Oh0 remains the same even though we note that k? becomes a bit smaller for Oh0 < Oh?0,
and becomes a bit larger for Oh0 > Oh?0.
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Figure 3. Plateau cut-off wavenumber, critical wavenumber curve, and three possible behaviour of the viscoelatic jet for the
range of wavenumbers studied, and for De1 = 1 and De2 = 0.001.

We now formulate the complete expression of the first-order flow properties, taking into account the additional mode,
as follows:

η1(z, t) =
∑

u=d,sa,sb

η̂1ue
−α1ut cos(kz)

u1(r, z, t) =
∑

u=d,sa,sb

η̂1u

[(
2k2Ohv1u − α1u

) I1(kr)

I1(k)
− 2Ohv1uk

2 I1(lv1ur)

I1(lv1u)

]
e−α1ut cos(kz)

w1(r, z, t) = −
∑

u=d,sa,sb

η̂1u

[(
2k2Ohv1u − α1u

) I0(kr)

I1(k)
− 2Ohv1uklv1u

I0(lv1ur)

I1(lv1u)

]
e−α1ut sin(kz)

p1(r, z, t) =
∑

u=d,sa,sb

η̂1uα1u

k

I0(kr)

I1(k)

(
2k2Ohv1u − α1u

)
e−α1ut cos(kz)

Given an arbitrary value for one of the amplitude coefficients, the two others are obtained from the two initial
conditions.

Second-order equations and solutions
The second-order set of equations reads:

1

r
(ru2),r + w2,z = 0 for r ≤ rs

u2,t + u1u1,r + w1u1,z =− p2,r +
1

r
(rτrr2),r −

τθθ2
r

+ τzr2,z for r ≤ rs

w2,t + u1w1,r + w1w1,z =− p2,z +
1

r
(rτrz2),r + τzz2,z for r ≤ rs

τ2 +De1τ2,t = 2Oh0(D2 +De2D2,t) for r ≤ rs
−De1 [(v1 ·∇) τ1 +W1 · τ1 − τ1 ·W1 −D1 · τ1 − τ1 ·D1]

+ 2De2 [(v1 ·∇)D1 +W1 ·D1 −D1 ·W1 − 2D1 ·D1]

u2 − u1,rη1 − w1η1,z = η2,t at r = 1

τrz2 + η1τrz1,r + η1,z(τrr1 − τzz1) = 0 at r = 1

p2 + η2 + η2,zz − τrr2 = − η1p1,r + η1τrr1,r − 2η1,zτrz1 + η21 −
1

2
η21,z at r = 1

η2(z, t = 0) = − 1

4

η2,t(z, t = 0) = 0

The second-order solutions for the velocity components, pressure, extra-stress and jet surface shape are sought
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under the forms :

u2(r, z, t) =u21(r, z, t) + u22(r, z, t)

w2(r, z, t) =w21(r, z, t) + w22(r, z, t)

p2(r, z, t) =p21(r, z, t) + p22(r, z, t)

η2(r, z, t) =η21(r, z, t) + η22(r, z, t)

where the subscripts "21" denote the contributions of first order through nonlinear terms and where the subscripts
"22" correspond to the contributions of second order through linear terms.

The contributions subscripted with "22" are directly deduced from the linear problem, since they are of the same
structure as for first order, with the wavenumber k replaced by 2k, the growth rate α1 replaced by α2, the factor β1
replaced by β2 = (1−α2De2)/(1−α2De1), the modified Ohnesorge number Ohv1 replaced by Ohv2 = β2Oh0 and
the modified wavenumber l2v1 replaced by l2v2 = 4k2 − α2/Ohv2. The second-order mode eigenvalues are obtained
as roots of the dispersion relation (DR) but formulated with the modified parameters exposed before. The second
contributions to the second-order solutions are then given by:

η22(z, t) =
∑

u=d,sa,sb

η̂22ue
−α2ut cos(2kz)

u22(r, z, t) =
∑

u=d,sa,sb

η̂22u

[(
8k2Ohv1u − α2u

) I1(kr)

I1(k)
− 8Ohv2uk

2 I1(lv2ur)

I1(lv2u)

]
e−α2ut cos(2kz)

w22(r, z, t) = −
∑

u=d,sa,sb

η̂22u

[(
8k2Ohv2u − α2u

) I0(kr)

I1(k)
− 8Ohv2uklv2u

I0(lv2ur)

I1(lv2u)

]
e−α2ut sin(2kz)

p22(r, z, t) =
∑

u=d,sa,sb

η̂22uα2u

2k

I0(kr)

I1(k)

(
8k2Ohv2u − α2u

)
e−α2ut cos(2kz)

The amplitudes η̂22d, η̂22sa and η̂22sb are derived using the same method as for η̂1d, η̂1sa and η̂1sb, and therefore
depend only on the solutions of the second-order dispersion relation.

Concerning the contributions subscripted with "21", they exhibit exponential time dependencies with the three non-
identically zero solutions of the first-order dispersion relation, so that:

u21(r, z, t) =usa21(r, z)e−2αsat + usb21(r, z)e−2αsbt + ud21(r, z)e−2αdt

+ usa,sb21 (r, z)e−(αsa+αsb)t + usa,d21 (r, z)e−(αsa+αd)t + usb,d21 (r, z)e−(αsb+αd)t

w21(r, z, t) =wsa21(r, z)e−2αsat + wsb21(r, z)e−2αsbt + wd21(r, z)e−2αdt

+ wsa,sb21 (r, z)e−(αsa+αsb)t + wsa,d21 (r, z)e−(αsa+αd)t + wsb,d21 (r, z)e−(αsb+αd)t

p21(r, z, t) =psa21(r, z)e−2αsat + psb21(r, z)e−2αsbt + pd21(r, z)e−2αdt

+ psa,sb21 (r, z)e−(αsa+αsb)t + psa,d21 (r, z)e−(αsa+αd)t + psb,d21 (r, z)e−(αsb+αd)t

τ21(r, z, t) =τ sa21 (r, z)e−2αsat + τ sb21 (r, z)e−2αsbt + τ d21(r, z)e−2αdt

+ ηsa,sb21 (r, z)e−(αsa+αsb)t + ηsa,d21 (r, z)e−(αsa+αd)t + ηsb,d21 (r, z)e−(αsb+αd)t

Using the continuity equation, we eliminate the second-order velocities from the momentum equations and then we
obtain:

∆p21 = −∇ · [(v1 ·∇)v1] + ∇ · [∇ · τ21]

After using the Lamé identity for the convective derivative of v1 and re-writing the cross product of the first-order
velocity v1 with its curl, the previous equation becomes:

∆[p21 + v2
1/2] = −∇ ·

 ∑
u=d,sa,sb

α1u

Ohv1u

ψb1u
r2

∇ψ1

+ ∇ · [∇ · τ21]

where ψ1 corresponds to the first-order stream function with the property that: u1 = −ψ1,z/r and w1 = ψ1,r/r.
According to the first-order solutions, the expression of ψ1 is given by:

ψ1(r, z, t) =
∑

u=d,sa,sb

−rI1(kr)

kI1(k)
η̂1u(2k2Ohv1u − α1u)e−α1ut sin(kz) +

∑
u=d,sa,sb

2kOhv1urη̂1u
I1(lv1ur)

I1(lv1u)
e−α1ut sin(kz)

: =
∑

u=d,sa,sb

ψa1u(r, z, t) +
∑

u=d,sa,sb

ψb1u(r, z, t)

The use of the stream function automatically ensures that the continuity equation is satisfied.
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The Poisson equation for the modified pressure p21 + v2
1/2 has a similar structure as in the Newtonian case, but in

the latter case, the term with the divergence of the extra stress tensor τ2 on the right-hand side of this equation van-
ishes. The presence of this term in this equation does not change the methodology of solution of the second-order
system compared to the Newtonian one, but requires an additional use of the polynomial approximation of product
of modified Bessel functions of first kind with different arguments, already used by Renoult et al. [3].

This weakly nonlinear stability analysis could bring us the first details concerning the effects of the non-linearities on
the jet stability characteristics, which arise from the non-planar geometry, the momentum advection, and the RCE.

Conclusion
A weakly nonlinear temporal stability analysis of a viscoelastic liquid jet was performed. The first and second-
order sets of governing equations were found to be quite similar to the Newtonian ones, and allowed us to solve the
problem by the same methodology as in Renoult et al. [3]. Nonetheless, an additional eigenvalue appears in the non-
Newtonian case while finding the roots of the dispersion relation. Taking into account this novelty, the expression
of the flow quantities such as surface jet shape, velocity components, and pressure are given. Concerning the
second-order solutions, the main difference between the Newtonian and the viscoelastic case is the presence of
an additional term in the Poisson equation for the pressure, that actually just requires an additional polynomial
approximation of products of Bessel functions of first kind with different arguments. From our results, we can
affirm that the viscoelastic liquid jet gets stabilised for wavenumbers larger than unity, whatever are the rheological
characteristics of the fluid. Nevertheless, parameters such as the zero-shear viscosity, the relaxation time and
the deformation retardation time have notable influence on the values of the eigenvalues. The influence of these
parameters and of the three sources of non-linearities are still under investigation.
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