
ILASS–Europe 2019, 29th Conference on Liquid Atomization and Spray Systems, 2-4 September 2019, Paris, France

Two-way coupling of the fully Lagrangian Approach with OpenFOAM
for spray modelling

Oyuna Rybdylova∗,1, Timur Zaripov1, Yuan Li1
1Advanced Engineering Centre, University of Brighton, BN2 4GJ, Brighton, UK

*Corresponding author: O.Rybdylova@brighton.ac.uk

Abstract
Accurate prediction of admixture distribution in space and in size is important for spray modelling in applications
ranging from medical aerosols to fuel sprays in internal combustion engines. Modelling polydisperse sprays with in-
ertial particles/droplets is particularly challenging as these types of flows may have trajectory crossing and caustics.
The family of Eulerian-Eulerian methods are shown to be computationally expensive for these types of flow. The
conventional approach to simulate admixture with low volume fraction is Lagrangian particle tracking, which implies
direct calculation of the number of particles/droplets in a computational cell. The focus of this study is investigation
of droplet dynamics and evaporation based on the Fully Lagrangian Approach (FLA). According to this method, par-
ticles/droplets are treated as a continuum (or a set of continua), which makes it possible to calculate particle/droplet
number density from the continuity equation for the dispersed phase along chosen particle/droplet trajectory. The
study is focussed on the implementation of two-way coupled FLA into open source CFD software OpenFOAM and
generalisation of FLA for polydisperse flows. Both strands aiming to develop the FLA for wider use in engineering
applications.
To take into account the effect of polydispersity of droplets, the continuity equation in the FLA has been generalised
by introducing a new particle distribution function (PDF). This function represents the distribution of droplets over
space, time and sizes. The set of Lagrangian variables in this case increases to include initial droplet size. This
approach has been applied to a number of 1D and 2D flows of evaporating droplets with and without trajectory
crossing.
The FLA has been implemented as part of OpenFOAM v6 Lagrangian library, allowing it to be used with all Open-
FOAM solvers. A new steady-state two-way coupled 2D OpenFOAM solver has been developed and applied to test
the FLA implementation in the case of gas-particle flow in a backward-facing step. The effect of mass loading of
particles on the size of the recirculation zone has been shown.
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Introduction
Gas-droplet flows are widely observed in engineering and environmental conditions [1], including during fuel injec-
tion in internal combustion engines [2]. In such flows, the admixture forms high concentration regions with folds
(local zones of crossing particle/droplet trajectories, hereafter referred to as particles) and caustics. The Eulerian
approaches cannot describe such regions with reasonable accuracy, since these approaches are based on the as-
sumption of single-valued fields of the particle concentration and velocities. As shown by Healy and Young [3], the
only method capable of calculating the particle concentration field in the case of multi-valued admixture parameter
fields, without using excessive computer power, is the one suggested by Osiptsov [4], known as the Fully Lagrangian
Approach (FLA). At the edge of a local region of crossing particle trajectories (caustics), the particle number density
has a singularity. This is a well-known feature of the mathematical model of the collisionless continuum of point
particles (see details in [5]). In the latter paper, typical examples of flows with singularities in the particle number
density field were analysed. It was shown that for an integrable singularity of particle number density, at the singular
points the mean distance between the particles remains finite and the model of collisionless particles remains valid.
Our study is focused on further development of the Fully Lagrangian Approach (FLA) for the dispersed phase. The
paper is arranged as follows: Section 1 is dedicated to the description of the generalised FLA (gFLA) and examples
of application of gFLA; Section 2 covers implementation of the two-way coupled FLA in OpenFOAM.

The fully Lagrangian approach and its generalisation
In this section, only mathematical formalism for admixture in gas-droplet/particle flow is presented as this is the focus
of the study. The carrier phase is described using a conventional approach such as an analytical or a numerical
solution to Navier–Stokes equations.

FLA for monodisperse admixture
Following the Fully Lagrangian Approach [4], the Lagrangian variables are the initial coordinates of the droplet
positions x0, y0, z0. The continuity equation for the dispersed phase takes the form:

nd |J | = nd0, (1)
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where nd is the droplet number density, |J | ≡ |det(J)| is the Jacobian of the transformation from Eulerian to
Lagrangian coordinates Jij = ∂xi/∂xj0, indices i and j take the values of 1, 2, and 3, corresponding to x, y,
and z coordinates. Since the volume fraction of admixture is small, the droplets are treated as a pressureless
continuum [6]. The closed system of equations for the dispersed phase is presented as:

nd |J | = nd0,
∂xd
∂t

= vd,
∂vd
∂t

= fd,

cdl
∂Td
∂t

= qd,
∂Jij
∂t

= qij ,
∂qij
∂t

=
∂fid
∂xj0

.
(2)

Here fd is the force exerted on a droplet, which is usually a known function of other parameters and the coordinates;
qd is the heat flux to the droplet, cdl is the liquid heat capacity.
Dispersed phase radius vector xd, velocity vd, temperature Td, and number density nd are functions of x0, y0, z0,
and time t. For a chosen droplet trajectory, which corresponds to constant x0, y0, z0, Equations (2) become a
system of Ordinary Differential Equations with respect to time t. The initial conditions for Equations (2) correspond
to the way the dispersed phase is introduced or fed to the flow.

Generalised FLA
The model described in the previous section can be generalised for the case of polydisperse particles [4]. The
Lagrangian variables are the initial coordinates of the droplet positions x0, y0, z0, and the initial size rd0. The
generalised continuity equation for the dispersed phase takes the form:

ñd (t,xd, rd) |J | = ñd0, (3)

Here, ñd is a distribution of droplets over space, time and sizes, rd is the droplet radius, x = (x, y, z) is a droplet
position, |J | ≡ |det(J)| is the Jacobian of the transformation from Eulerian to Lagrangian coordinates with the
following components:

J =


J11 J12 J13 J14
J21 J22 J23 J24
J31 J32 J33 J34
J41 J42 J43 J44

 =


∂x/∂x0 ∂x/∂y0 ∂x/∂z0 ∂x/∂rd0
∂y/∂x0 ∂y/∂y0 ∂y/∂z0 ∂y/∂rd0
∂z/∂x0 ∂z/∂y0 ∂z/∂z0 ∂z/∂rd0
∂rd/∂x0 ∂rd/∂y0 ∂rd/∂z0 ∂rd/∂rd0

 (4)

For a chosen particle trajectory, we have the following system of ODE:

∂xd
∂t

= vd,
∂vd
∂t

= fd,

cdl
∂Td
∂t

= qd,
∂rd
∂t

= ṙd,

∂Jij
∂t

= qij ,
∂qij
∂t

=
∂fdi
∂xk

Jkj +
∂fdi
∂rd

J4j , i = 1, 2, 3, j = 1, ..., 4

∂J4j
∂t

=
∂ṙd
∂x0j

J4j ,
∂J44
∂t

=
∂ṙd
∂rd

J44, i, j = 1, 2, 3.

(5)

fd is the force exerted on a droplet, which is usually a known function of the droplet size, droplet velocity, and
other parameters; ṙd is rate of droplet size change, which is usually a known function of the droplet size and
thermodynamic parameters, qd is the heat flux to the droplet, cdl is the liquid heat capacity, the values of 1, 2, and 3
correspond to x, y, and z coordinates respectively.
The following two sections describe examples of application of the gFLA to 1D and 2D flows.

1D quiescent carrier phase
Consider an injection of droplets into a still hot air with uniform temperature Ta, droplets injected with the same
velocity U and temperature T0.
The force and heat flux on the droplet are presented as follows:

fd = 6πr∗dµ (v
∗ − v∗

d) ,

qd = 4πr∗dλ(T
∗ − T ∗

d ).
(6)

Assume all the heat that reaches droplet surface is spent on evaporation of the droplet, then

ṁ =
qd
H
,

where H is the latent heat of evaporation of the droplet liquid.
The following non-dimensional parameters are introduced:

x(d) =
x∗(d)
lτ

, u(d) =
u∗
(d)

U
, t =

Ut∗

lτ0
, rd =

r∗d
r0
, ñd =

ñ∗
d

ndt0
,

T (Ts) =
T ∗(T ∗

s )− T0

Ta − T0
.

(7)
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where the carrier phase (parameters without subscript) and the dispersed phase (with subscript ‘d’) coordinates
and velocities are normalised using the droplet velocity relaxation length lτ0 corresponding to the characteristic
droplet radius r0 and droplet initial velocity U ; ndt0 – total initial droplet number density at x0, where the droplets
are injected; the so-defined dimensionless temperature takes values between 0 and 1, with 0 corresponding to the
droplet injection temperature.

lτ0 =
m0U

6πr0µ
, m0 =

4

3
πr30ρdl,

where ρdl is the droplet liquid density.
For 1D case, Equations (3)–(5) take form:

ñd (t, x, rd) |J | = ñd0, (8)

J =

(
J11 J12
J21 J22

)
=

(
∂x/∂x0 ∂x/∂rd0
∂rd/∂x0 ∂rd/∂rd0

)
(9)

dxd
dt

= ud,
dud
dt

= − 1

r2d
ud,

Td = 0,
dr2d
dt

= −δ,

dJ11
dt

= q11,
dJ12
dt

= q12,

dq11
dt

= − 1

r2d
q11 +

2

r3d
udJ21,

dq12
dt

= − 1

r2d
q12 +

2

r3d
udJ22

dJ21
dt

= 0,
dJ22
dt

=
δ

2r2d
J22

δ =
4

9

λ (Ta − T0)

µH
.

(10)

Assume that the initial distribution of droplet sizes at x0 is log-normal:

ñd0 =
1

rd

1

S
√
2π

exp

(
− (ln rd −M)2

2S2

)
,

where M = 0.16 and S = 0.4 are mean and variance for the corresponding normal distribution, see Fig. 1.

Figure 1. Normalised droplet size distribution.

In the case of stationary flow, the the system (8)– (10) can be reduced to

ñd (t, x, rd)

∣∣∣∣ud ∂x/∂rd0
ṙ ∂rd/∂rd0

∣∣∣∣ = ñd0ud0, (11)

This work is licensed under a Creative Commons 4.0 International License (CC BY-NC-ND 4.0).



ILASS – Europe 2019, 2-4 Sep. 2019, Paris, France

dxd
dt

= ud,
dud
dt

= − 1

r2d
ud,

Td = 0,
dr2d
dt

= −δ,

dJ12
dt

= q12,
dq12
dt

= − 1

r2d
q12 +

2

r3d
udJ22

dJ22
dt

=
δ

2r2d
J22

δ =
4

9

λ (Ta − T0)

µH
.

(12)

The initial conditions for System (10) are:

x = x0, ud = 1, Td = 0, ñd = ñd0, rd = rd0

J12 = 0, J22 = 1, q12 = 0.
(13)

System (12) can be solved analytically. The analytical solution is used to test numerical calculations. The solution
is

xd =
r2d0
δ + 1

[
1−

(
1− δt

r2d0

) δ+1
δ

]
,

ud =

(
rd
rd0

)2/δ

=

(
1− δt

r2d0

)1/δ

,

r2d = r2d0 − δt,

J22 =
rd0
rd
,

J12 = − 2

rd0

(
1− δt

r2d0

)1/δ

t,

ñd = ñd0

(
1− δt

r2d0

)−1/2

= ñd0
rd0
rd

(14)

The results are presented in Fig. 2, for δ = 1. As expected, smaller droplets relax to the stationary flow quicker that
the larger droplets (Fig. 2 left). As droplets evaporate, the maximum of the distribution functions shifts to the left
(Fig. 2 right) and its value decreases.

Figure 2. Profiles at various cross-sections: velocity distribution against size (left); distribution function against size (right)

2D spray injection in cross-flow
Consider an injection of droplets into a hot air with uniform temperature Ta and constant velocity U , droplets injection
forms a 90 ◦–jet with constant velocity magnitude U∗

j and temperature T0.
The force and heat flux on the droplet are as before, see Equations (6). Same as earlier, we assume that all the
heat that reaches droplet surface is spent on evaporation of the droplet.
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If the characteristic length is taken equal to droplet velocity relaxation length, then the non-dimensional parameters
are introduced as:

x(d) =
x∗(d)
lτ0

, u(d) =
u∗
(d)

U
, t =

Ut∗

lτ0
, rd =

r∗d
r0
, ñd =

ñ∗
d

ndt0
,

T (Ts) =
T ∗(T ∗

s )− T0

Ta − T0
, lτ0 =

m0Um
6πr0µ

, m0 =
4

3
πr30ρdl,

(15)

ndt0 – total initial droplet number density at x0, where the droplets are injected; the so-defined dimensionless
temperature takes values between 0 and 1, with 0 corresponding to the droplet injection temperature, ρdl is the
droplet liquid density, the droplet velocity relaxation length lτ0 corresponds to the characteristic droplet radius r0
and gas velocity U .
System (5) can be simplified for 2D steady-state flows and it takes form:

ñd (t, x, rd)

∣∣∣∣∣∣det
J11 ud J13
J21 vd J23
J31 ṙ J33

∣∣∣∣∣∣ = ñd0vd0, (16)

For horizontal flow of the carrier phase and β = 1, the system of ODEs takes form:

dxd
dt

= ud,
dyd
dt

= vd,
dud
dt

=
1

r2d
(1− ud) ,

dvd
dt

= − 1

r2d
vd,

Td = 0,
dr2d
dt

= −δ,

dJ11
dt

= q11,
dJ13
dt

= q13,

dJ21
dt

= q21,
dJ23
dt

= q23,

dq11
dt

= − 1

r2d
q11 −

2

r3d
(1− ud) J31,

dq13
dt

= − 1

r2d
q13 −

2

r3d
(1− ud) J33,

dq21
dt

= − 1

r2d
q21 +

2

r3d
vdJ31,

dq23
dt

= − 1

r2d
q23 +

2

r3d
vdJ33,

dJ31
dt

= 0,
dJ33
dt

=
δ

2r2d
J33,

δ =
4

9

λ (Ta − T0)

µH

(17)

Corresponding initial conditions are:

x = x0 ∈ [−ε, ε], y = 0, ud = Uj cos
(
−π
4
· x0
ε

+
π

2

)
, vd = Uj sin

(
−π
4
· x0
ε

+
π

2

)
,

Td = 0, ñd = ñd0, rd = rd0

J11 = 1, J13 = 0, J21 = 0, J23 = 0, J31 = 0, J33 = 1,

q11 =
1

ε

π

4
Uj cos

(π
4

x0
ε

)
, q13 = 0, q21 = −1

ε

π

4
Uj sin

(π
4

x0
ε

)
, q23 = 0.

(18)

The initial distribution of droplet sizes at is assumed to be the same as in the previous example.
The results are presented in Fig. 3, for δ = 1 and β = 1. On the left Figure, the size of the marker is proportional
to the size of the droplet, colour denotes distribution function of droplets. On the right Figure, one can see the total
number density, which is obtained after integration over all sizes at each point. As expected, as droplets are carried
by the cross flow and evaporate, the distribution of droplets shifts to the right and total number decreases.

Two-way coupled Fully Lagrangian approach
The carrier phase is modelled as an incompressible or compressible viscous flow of gas described by the mass
continuity and Navier–Stokes equations. In the case of an incompressible flow these equations are presented as

∇ · u = 0, (19)

ρ
∂u
∂t

+ ρ(u · ∇)u = −∇p+ µ∇2u + Su, (20)

where ρ is the gas density, u is the gas velocity, p is the static pressure, µ is the gas dynamic viscosity, Su is the
source term due to momentum exchange with dispersed phase.
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Figure 3. Droplet trajectories and distribution function (left); total number density at various cross-sections (right).

Flow Reynolds number is defined as

Re =
ρLU

µ
, (21)

where L and U are characteristic length and velocity scales.
The dispersed phase is modelled using FLA for monodisperse admixture [4]. Inertial behaviour of particles is
determined by the Stokes number

Stk =
τd
τf
, (22)

where τf is the characteristic flow time, and particle response time τd is estimated as

τd =
ρdd

2
d

18µ
. (23)

Coupling of phases
The contribution of a single particle to Eq.20 is written as

Su,d = −ραnd
md

dv
dt

= −ραnd
md

β(u− v), (24)

where md is the mass of a droplet.
In the steady-state case the collective source term for all the trajectories passing through control volume is calculated
as

Su,cv = − ρ

ntraj

ntraj∑
j

αjβj
md,j

ncv,j∑
i

nd,ji(uji − vji), (25)

where ntraj is the number of trajectories passing though the cell, ncv,j is the number of points along the trajectory j
in current control volume.
This model has been implemented into open-source CFD code OpenFOAM v6.

Back-facing step flow
As test case for the new solver, a laminar steady-state flow of air with inertial particles over back-facing step has
been used. Scheme of computational domain is shown in Fig.4. Boundary conditions are set as follows: AB is
velocity inlet, EF is pressure outlet, BC, CD, DE and AF are walls. As in [7], ratio (EF)/AB = 1.9423 and L = 2∗AB
is a characteristic length in Eq. 21. To have a consistent Re and Stk dimensional velocity at inlet has been fixed at
U = 0.03m s−1. All results presented below are for the case with Re = 50 and Stk = 0.5. For this case, coupled
and uncoupled solution were calculated. Results of the calculations for the uncoupled flow were verified against
reference numerical solutions and experimental studies [7, 8].
Dimensional velocity magnitude of the air for the coupled solution and samples of values of number density np along
trajectories are shown in Fig.5 at the top and bottom figures respectively. It can be seen, that number density has
tendency to increase in the areas where flow slows down (centre of the stream), and decrease in the areas where
flow speeds up (along the boundary layer and recirculation region behind the back-facing step).
Profiles of the dimensional air velocity in x-direction u∗

x along the vertical lines are shown in Fig.6. Solid line
corresponds to the uncoupled solution, dashed line corresponds to the two-way coupled solution. The the u∗

x profile
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Figure 4. Calculation domain.

Figure 5. Velocity magnitude (top) and particle number density samples (bottom).

of the uncouples solution tends to symmetrical shape faster than the two-way coupled one. Inertia of the particles
keeps this profile asymmetrical and maximal u∗

x in the stream higher for the two-way coupled solution.
Profiles of the dimensional air velocity in x-direction u∗

x along the horizontal line y = 0.95 ∗ EF are shown in Fig.7.
Solid line corresponds to the uncoupled solution, dashed line corresponds to the two-way coupled solution. Points,
where the lines cross y = 0, correspond to the end of recirculation zone. In can be seen, that the recirculation zone
is bigger for two-coupled case compared to uncoupled one, which is due to higher flow velocity in the stream.

Figure 6. u∗
x profiles along the vertical lines.

Conclusion
Two-way momentum coupled model of gas-particle flow has been developed and implemented into OpenFOAM.
Predictions of the new model have been compared to uncoupled flow for the case of back-facing step flow. Com-
parison have showed significant effect of the coupling on the horizontal velocity profiles and the size of recirculation
zone.
The Fully Lagrangian approach has been developed to take into account polydispersity and evaporation/condensation
of droplets, and has been tested in simple case studies. Further work is required to couple gFLA with OpenFOAM
to enable simulations of more complex flows.
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Figure 7. u∗
x profiles along the horizontal line y = 0.95 ∗ EF.
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Nomenclature
fd aerodynamic drag force
FLA Fully Lagrangian Approach also known as Osiptsov’s method [4]
J Jacobian and Jacobian components
m mass of a particle/droplet of radius σ
nd particle/droplet number density
q denote partial derivatives of Jacobian components with respect to Lagrangian coordinates 5
t time [s]
v = (u, v) velocity
U axial velocity used in defining the SDV model
r droplet radius
x = (x, y) position vector
α mass fraction of admixture
β droplet inertia parameter
δ droplet evaporation parameter
µ dynamic viscosity [Pa s]

ρ density [kg m−3]
Subscripts
d aerodynamic drag
d dispersed phase parameter
i, j indices
0 initial value
Superscripts
∗ dimensional parameter
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