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Abstract
When considering drop impact on a superhydrophobic surface, it has been shown that drop rebound can occur
faster on surfaces with millimetric-micrometric scale features in respect to flat surfaces. Numerous studies, mostly
experimental, have dealt with the role of surface patterns in reducing the contact time between the solid surface and
the liquid drop. On the other hand, only limited numerical work has been done on this topic, especially in conjunction
with the Volume of Fluid (VoF) method. Since more than 20 years, the Institute of Aerospace Thermodynamics of
the University of Stuttgart is developing its own, VoF-based program for direct numerical simulations (DNS) of multi-
phase flows: Free Surface 3D (FS3D). Since FS3D is based on a Cartesian grid, we are currently implementing
a method to represent the interaction of multi-phase flows with solid bodies embedded in a Cartesian geometry.
In particular, we represent the embedded boundaries with an additional volume of fluid variable and, in each cell
intersecting a boundary, we approximate the boundary surface with a plane (PLIC-scheme). We also deal with
critical cells by merging them with one of their neighbors by means of a cell-linking strategy. In this work, we validate
the method by comparing simulations of drop impact onto superhydrophobic featured walls with data from literature
[2]. We simulate the case investigated by Chantelot et al. [2] of a water drop impacting on a superhydrobhobic
surface with a spherical singularity. As in [2], we firstly study the drop impact at the top of the spherical singularity at
different Weber numbers and then a set of simulations is carried out in which the centres of the drop and the sphere
are horizontally shifted. We present the numerical setup, the grid and the used computational resources for each of
our simulations. The results show a very good agreement for contact time and impact morphology, demonstrating
the capability of FS3D in capturing the physics of the phenomenon.
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Introduction
The role of millimetric-micrometric scale structures in changing the impact morphology of water droplets on super-
hydrophobic surfaces is of great interest in all those applications where the contact time between water drop and
surface is of crucial importance, as for example for the anti-icing on airplane wings. Recently, numerous experi-
mental studies have dealt with drop impact on different superhydrophobic structures; such as wires [3], ridges [9],
and spherical singularities [2]. Chantelot et al. [2] also present numerical results obtained with the lattice Boltz-
mann method. Numerical studies about drop impact on superhydrophobic structured surfaces are however, to our
knowledge, relatively rare. In this paper we present our study based on Free Surface 3D (FS3D), a CFD code for
DNS simulations of multi-phase flows. FS3D has been developed at the Institute of Aerospace Thermodynamics at
the University of Stuttgart and it has been in use since more than 20 years. This code can, between others, treat
rigid particles immersed in a continuous fluid phase [8], but until recently could not handle different fluid phases
interacting with arbitrary solid shapes. We are currently expanding FS3D to deal with this latter case. This work
is organized as follows: in section "Numerical Methods" we briefly illustrate FS3D’s numerical fundamentals and
we discuss our method to treat solid boundaries embedded in a Cartesian grid. Secondly, in section "Results and
discussion", we validate our method for the case studied by Chantelot et al. [2] for a water drop impacting onto a
spherical singularity. Firstly we show our results for the centered impact on the top of the sphere at two different
Weber numbers. Secondly, the case of off-centerd impact for three different offsets is studied. Also an overview of
the numerical setup and used computational resources are given.

Numerical Methods
FS3D is a Cartesian, MAC-staggered [4] Finite Volumes code for DNS simulations of incompressible multi-phase
flows. Multiple phases are handled with the VoF-Method [5]; that is, each phase i is represented by a color (step)
function αi(x), which is defined in each position x = xe1 + ye2 + ze3 as follows:

αi(x) =

{
1 inside phase i
0 outside phase i

(1)
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Each material property of the flow φ(x) is assumed constant within each phase and can be described by the
following formula:

φ(x) =

Np−1∑
i=1

αiφi(x) + (1−
Np−1∑
i=1

αi(x))φNp (2)

whereNp is the number of phases, and where we used the fact that
Np∑
i=1

αi(x) = 1 in each position x. The necessary

equations for the temporal evolution of the interfaces between the phases are obtained by imposing the condition

that the volume fraction fi =

(∫
Ω

αi(x) dΩ

)
/Ω of each phase i is conserved in any arbitrary control volume Ω:

∂fi
∂t

= −∇ · (fu) i = 1, . . . , Np − 1 (3)

where we assume that there is no phase change. After finite-volume discretization, fi represents the volume fraction
of the i-th phase in the considered computational cell. To avoid numerical diffusion, the PLIC-scheme [11] is used
for sharp interface reconstruction: in each (scalar) control volume where 0 < fi < 1 the interface is reconstructed
using a plane of orientation n = ∇fi. In the following, we will only consider isothermal systems of a disperse liquid
phase (water) immersed in a continuous gas phase (air) interacting with a fixed solid boundary. As a consequence,
only the equation for the transport of the liquid volume fraction f is necessary for interface tracking. The remaining
governing equations of our problem are the equation of mass conservation in incompressible flows:

∇ · u = 0 (4)

and the the Navier-Stokes equations for the transport of momentum:

∂(ρu)

∂t
+∇(ρu⊗ u) = −∇p+∇ · S + ρg + fσ (5)

After time discretization, an equation for pressure is obtained by forcing the divergence-free condition on the velocity
field:

u− ũ

∆t
= −∇p

ρ
→ u = ũ− ∆t∇p

ρ
(6)

∇ · u = ∇ ·
(
ũ− ∆t∇p

ρ

)
= 0→ ∇ ·

(
∆t∇p
ρ

)
= ∇ · ũ (7)

Where ũ is an intermediate velocity field to which all acceleration terms of equations 5, but the pressure term, have
been added. Discretization of equation 7 leads to a linear system of equations for p which is dealt with a multigrid
solver enmbedded into FS3D [12]. The final velocity field can then be obtained from 6.

Implementation of embedded boundaries
In this subsection our implementation of embedded boundaries is discussed briefly: a more detailed description
can be found in [1]. The representation of rigid solid particles immersed in a continuous phase was implemented
by Rauschenberger et al. [8] on the basis of the method developed by Patankar [6]. We base our work on this
implementation: similarly to [8], embedded boundaries are described by their volume fraction fb and the PLIC-
scheme is used to represent their surface. Since there is no transmission of momentum from the fluid flow to the
wall structures, we treat those as rigid bodies with infinite density. However, this causes the velocity grid nodes to be
zero in all those (staggered) control volumes which contain a fraction of the boundary fb 6= 0. Because the flow is
incompressible, if the velocities are set to zero on Nfaces − 1, then the velocity on the Nfaces-th face also has to be
zero (see figure 2). As a consequence, no advection of the fluid volume fraction f would be possible in those cells.
Our solution consists in identifying critical cells (slaves) and merging them to their neighbor in the direction of the
largest component of the boundary normal vector nb. This is possible by allocating boundary cell data structures
in each boundary-crossed cell where 0 < fb < 1 and in their neighborhood (see figure 2). When a critical cell is

boundary cell
type(boundary cell), pointer: master, slave
integer(1:3): i = ie1 + je2 + ke3

Figure 1. The structured data type boundary cell

identified, an univocal link between the master and its slave is established by means of the master and slave pointer
attributes. This was possible because until now we only considered convex structures. However, an extension of
our model allowing a master to have multiple slaves is possible. After master -slave linking, master and slave are
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Figure 2. Left: a critical cell with zero velocities on all the faces. Right: master -slave linking.

treated as a single control volume. The advection of a fluid volume fraction is written in terms of the total volume
fraction ft in the master-slave cells. The adaptation of FS3D’s original advection scheme [12, 11, 13]:

f∗i − fni
∆t

= −
Fi+ 1

2
e1
− Fi− 1

2
e1

∆xi
+ [(1− β)fni + βf∗i ]

ui+ 1
2
e1
− ui− 1

2
e1

∆xi
(8a)

f∗∗i − f∗i
∆t

= −
Fi+ 1

2
e2
− Fi− 1

2
e2

∆yi
+ [(1− β)f∗i + βf∗∗i ]

vi+ 1
2
e2
− vi− 1

2
e2

∆yi
(8b)

fn+1
i − f∗∗i

∆t
= −

Fi+ 1
2
e3
− Fi− 1

2
e3

∆zi
+ [(1− β)f∗∗i + βfn+1

i ]
wi+ 1

2
e3
− wi− 1

2
e3

∆zi
(8c)

takes then the following form for each step in any ea advection direction:

f∗t − fnt
∆t

= − FOUT − FIN
∆ΩiS + ∆ΩiM

+ [(1− β)fnt + βf∗t ]
Ω̇OUT − Ω̇IN

∆ΩiS + ∆ΩiM

(9)

where ∆ΩiM,S = ∆xiM,S∆yiM,S∆ziM,S are the volumes of the master and slave cells, FOUT, IN the volume frac-
tion numerical fluxes across the master-slave faces in direction ea, and Ω̇OUT, IN an altered divergence correction
which takes the presence of the boundary into account (see figure 3). The numerical fluxes and the divergence cor-

Figure 3. Top: volume fraction ft advection on merged master-slave control volumes. Bottom: velocity averaging on the upwind
faces of master-slave control volumes.

rection are calculated on the basis of an averaged velocity field on upwind faces of master-slave control volumes.
The averaging procedure does not alter the product between velocity field and the lateral free faces of upwind
master-slave control volumes. For example, at positions iM + (1/2)ea, iS + (1/2)ea:

unew iM+ 1
2
ea
AiM ea + unew iS+ 1

2
ea
AiS ea = uavg(AiM ea +A

iS e+
a

) = AiM eauiM+ 1
2
ea

(10)

However, since the velocity field may be overwritten by neighbor cells, the divergence-free condition may be violated
on master-slave control volumes and mass may not be conserved. In the simulations here presented, we observed
that the error on mass conservation Emmax = ‖(mt −m0)/m0‖∞ was less than 0.5 × 10−5, so negligible for the
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case considered here. However, we are currently addressing this issue by extending our implementation towards a
cut cell method similar to the one proposed by Popinet [7], with all the difficulties related to the implementation of
this method on a staggered grid.

Results and discussion
In this paper, the impact of a water drop of radius R = 1.3 mm on a spherical feature of radius r = 0.2 mm is studied.
This setup is analogous to the one of Chantelot et al. [2] and enables us to compare our results and assess the
capabilities of our code. In particular, we investigate the following aspects:

1. Effect of impact velocity for centered impact.

2. Effect of an horizontal offset on contact time and impact morphology.

Figure 4. Setup of the considered case: a spherical drop of radius R = 1.3 mm impacting on a spherical feature of radius
r = 0.2 mm without and with an horizontal offset xo.

Centered impact at different velocites
Two different behaviours were observed in [2] for centered impacts. For low velocities, impact occurred as on
a flat superhydrophobic surface. It has been shown that the contact time on a superhydrophobic flat surface is
proportional to τ0 ∝

√
ρR3/σ [10] and thus does not depend on the impact velocity. From their experiments,

Richard et al. [10] estimated that τ0 ≈ 2.6
√
ρR3/σ. As the velocity increases, the thickness of the lamella becomes

comparable to the size of the sphere. As a consequence, the lamella ruptures and collides with the outer receding
rim of the droplet, causing it to lift off with the shape of a torus. Because of the altered impact morphology, the
contact time is remarkably reduced (τ ≈ 1.24

√
ρR3/σ [2]). For R = 1.3 mm Chantelot et al. [2] determined the

velocity threshold between the two regimes as U∗ = 0.9 m s−1. We considered two impact velocities: one under
the threshold (U = 0.72 m s−1 < U∗) and one above (U = 1.28 m s−1 > U∗). Those velocities correspond to the
Weber numbers We = (ρRU2)/σ of 9.343 and 29.530 respectively. The simulations results at different times are
shown in figure 5; it can be seen that FS3D successfully captures the expected impact morphology for both cases.
In figure 6 the contact times of the simulations are plotted against the laws from literature for drop impact on a flat

t=0.000 ms t=2.875 ms t=5.750 ms t=8.500 ms t=11.375 ms t=14.125 ms

t=0.000 ms t=1.125 ms t=2.375 ms t=3.625 ms t=4.875 ms t=6.125 ms

Figure 5. Results for centered impact of a spherical drop with radius R = 1.3 mm on a superhydrophobic surface with a spherical
feature of radius r = 0.2 mm. Top: U = 0.72 m s−1. Bottom: U = 1.28 m s−1. For both cases, drop take off is shown in the last

picture.

superhydrophobic surface (τ0 = 2.6
√
ρR3/σ [10]) and for torus-shaped lift off (τ0 = 1.24

√
ρR3/σ [2]). It can be

seen that, although the contact time for the second case is slightly underestimated, the agreement with literature
data is good.
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Figure 6. Contact time τ against impact velocity U for centered impact.

Off-centered impact
As observed by [10], the functional relation τ0 ∝

√
ρR3/σ can be understood in terms of a balance between inertia

(ρR/τ2) and capillarity forces (σ/R2). As the droplet size decreases, so does the contribution of the inertia force
and detachment will occur more quickly. Chantelot et al. [2] deduce that the decrease in contact time for the ring-
shaped take off is due to a change in characteristic length which they identify with the ring width l. For centered
impact, l ≈ Rmax, where Rmax is the maximum radius reached by the drop before recoil, and both sides of the
ring bounce off symmetrically. They also show that, in presence of an horizontal offset xo, the ring is characterized
by two different widths l+ > Rmax and l− < Rmax and the two sides of the ring will leave the surface at different
times with τ(l−) < τ(l+). We carried out simulations for three different horizontal offsets (xo = 0.25R, xo = 0.50R,
xo = 0.75R) at the impact velocity of U = 1.28 m s−1 and estimated the characteristic lengths as l− = Rmax − xo
and l+ = Rmax + xo. The results for the temporal evolution of the impact are shown in figure 7. To compare our

t=0.000 ms t=1.500 ms t=3.000 ms t=4.500 ms t=5.875 ms t=6.625 ms

t=0.000 ms t=1.500 ms t=3.000 ms t=4.500 ms t=5.625 ms t=7.250 ms

t=0.000 ms t=1.000 ms t=2.125 ms t=3.250 ms t=4.375 ms t=7.375 ms

xo=0.25 R

xo=0.50 R

xo=0.75 R

Figure 7. Drop impact for an horizontal offset of xo = 0.25R (top), xo = 0.50R (center), and xo = 0.75R (bottom). The last two
pictures of each set show the take off of the two sides of the ring.

results with the data from [2], the ratio of the contact time to the contact time for the flat case τ/τ0 is plotted against
the normalized characteristic length l/Rmax in figure 8. The fit given by [2] for the contact time τ/τ0 ∝0.37(l/Rmax)
is also shown for comparison. It can bee seen that our data nicely follow the trend given by [2].

Numerical setup and computational cost
An overview of the numerical grid used for each simulation is shown in table 1. To reduce computational resources,
only one quarter of the domain was simulated for centered impact and one half for the off-centered cases. The
used boundary conditions were symmetry planes, no-slip for the wall and zero gradients for all remaining faces of
the computational domain. The Cartesian mesh was refined on the solid sphere, so that its radius is resolved by
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Figure 8. Normalized contact time τ/τ0 against the normalized characteristic length of the ring l/Rmax for off-centered impact.

about 60 grid cells. Here, a higher resolution would have been necessary to avoid the unphysical rupture of the film
on the top of the sphere, which we observed in some cases (see figure 9). However, this would have resulted in a
strong increase of the computational time. In addition, our simulations already show a very good agreement with
experimental data. Table 1 also shows the used computational resources for each simulation. It can bee seen from
the average number of cycles per second CPS that the current implementation is not very time efficient. However,
this feature is still in the developing phase. In any case, no simulation took longer than four days.

Table 1. Used Computational resources for each simulation. From left to right: number of cell in each direction, number of used
CPUs, average cycles per second, total number of cycles to lift off.

Nx ×Ny ×Nz Nproc CPS [s−1] Ctot

Centered U = 1.28 m s−1 384×384×384 144 0.2905 16362
Centered U = 0.72 m s−1 384×512×384 288 0.1470 43731
Off-centered xo=0.25R 768×384×384 288 0.1435 21074
Off-centered xo=0.50R 768×384×384 288 0.1673 27790
Off-centered xo=0.75R 768×384×384 288 0.2104 24457

Figure 9. Unphysical breaking of the water film on the top of the sphere. The grid resolution of the spherical feature is also visible.

Conclusions
In this paper, we discussed our method to represent the interaction of multi-phase flows with complex solid bound-
aries in the Cartesian DNS code FS3D. The case of drop impact on a superhydrophobic wall with a spherical defect
from [2] was simulated to compare the results with literature data. Different impact velocities and horizontal offsets
were studied. The results show a generally very good agreement with the data from [2] in terms of contact time and
impact morphology, proving the reliability of FS3D’s predictions for this particular case. Further investigations with
finer grids are under way.
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Nomenclature
α colour function
β divergence correction parameter
ρ density [kg m−3]
σ surface tension [kg s−1]
τ contact time [s]
φ material property of the flow
Ω volume [m3]
A area [m2]
Ctot total number of cycles to lift off
CPS average number of cycles per second [s−1]
e1, 2, 3 orthonormal basis of R3 and Z3

Em mass error
f volume fraction
fσ surface tension force per unit volume [N m−3]
i = ie1 + je2 + ke3 cell index
l characteristic size for torus-shaped take off [m]
M master attribute of the data structure boundary cell
m mass [kg]
n normal vector [m−1]
p pressure [N m−2]
R drop radius [m]
S viscous stress tensor [N m−2]
S slave attribute of the data structure boundary cell
r radius of the spherical feature [m]
t time [s]
U impact velocity [m s−1]
u = ue1 + ve2 + we3 velocity vector [m s−1]
x = xe1 + ye2 + ze3 space position [m]
xo horizontal offset [m]
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