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Abstract
A novel feature-rich discrete phase solver is presented and its applications to high-speed liquid sprays are dis-
cussed. The solver has been implemented in the 3D CFD VECTIS suite, which is a tool for solving advanced
industrial fluid flow problems. Eulerian/Lagrangian representation has been adopted for the analysis of the two-
phase flows with the discrete phase statistically grouped in computational parcels. The solver features a set of
detailed physical sub-models which are particularly suitable for high-speed sprays, namely the droplet evaporation,
aerodynamic drag and heat transfer, primary and secondary breakup and droplet impingement models.
The integration of the discrete phase is based on an advanced face-to-face tracking algorithm with variable time
step control used to maximise the efficiency of the time integration of the parcel balance equations. The time step
is chosen individually for each parcel based on the particle response times in the mass, momentum and energy
balances. This ensures that the time resolution of the solution is sufficient for an accurate prediction of the inter-
phase transfer processes. The phase coupling is an important issue for modelling of highly separated two-phase
flows. A kernel-function approach has been used in the code for the evaluation of continuous flow properties at
droplet positions as well as for the distribution of the sources from droplets to their gaseous surroundings. This
approach minimises undesirable effects of the computational grid on the spray formation prediction. The code
adopts an up-to-date approach to the spray breakup modelling. A hybrid breakup model improves the accuracy
of the breakup predictions for a wide range of conditions found in high-speed sprays by combining two breakup
models. The variable time stepping approach has been extended to take into account the droplet characteristic
breakup time.
The implemented solver has been applied to a number of test cases with different injector geometries and with
injection pressures up to the level typical for modern diesel engines. The predicted spray structures were validated
with experimental data demonstrating good accuracy of the spray solver. The computational costs of the discrete
phase solver have been found to be reasonable by comparison with the overall cost of the 3D flow solution.
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Introduction
Discrete phase modelling in computational fluid dynamics has been subject of continuous research over the past
three decades. Despite the accuracy of predictions having improved significantly, it is still regarded as a challenge
due to the complexity of the processes involved. In practical engineering applications, it is impossible to resolve
directly all the details of the flow. Approximate sub-models are needed to account for the processes taking place
on sub-grid scales. This necessarily introduces a certain level of empiricism and makes the results not entirely
predictive.
Spray processes are frequently encountered in a variety of industrial applications at a wide range of operating
conditions. Among them one of the most advanced applications is the internal combustion engine. Driven by
climate concerns, ever-tightening requirements for maximum fuel economy and minimum emissions have lead to
a rapid development of advanced combustion concepts. The predominant method of controlling the fuel mixture
preparation in majority of today engines is refining the liquid fuel injection. This has been accompanied by ever-
increasing injection pressures which poses a serious challenge to the numerical simulations of the two-phase flows
with rapid spatial and temporal flow variations, significant inter-phase velocity and temperature differences and
intense heat, momentum and mass transfer rates. These challenges make engine spray applications an excellent
choice when assessing a discrete phase solver.
In this work, the Eulerian/Lagrangian representation of two-phase flow has been adopted. This approach has been
the industrial standard for simulations of two-phase flows with discrete particles dispersed in the continuous fluid
due to its efficiency and clear interpretation of the underlying physics, see e.g. [6, 2].

Dispersed phase governing equations
The governing equations of particle motion are fundamental to the development of a discrete phase solver in La-
grangian framework. The primary application of the model is engine sprays, where the following basic assumptions
are commonly adopted:

• discrete phase is in the form of small, homogeneous, spherically symmetric particles,
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• discrete phase density is significantly higher than the continuous phase density,

• two-phase flow is highly separated – significant slip velocities between the phases.

Nevertheless, extensions of approaches developed for engine sprays to other applications, e.g. bubble flows, are
possible through introduction of appropriate terms into the governing equations presented below. In the present
work, the governing equations are described for chemically homogeneous (single-component) particles for simplic-
ity. However an extension of the model based on a multi-component liquid mixture model published in [5] is already
available in VECTIS-MAX.

Particle mass balance
Under the above-mentioned assumptions, the mass balance of an evaporating droplet can be written as,

dmD

dt
= ṁEV = −πDρFDSh ln

1− YG

1− YD,s
. (1)

Assuming constant fluid properties, re-arrangement and integration of the equation yields so-called D2–law,

D2 = D2
0 − ΛEt, ΛE = 4DSh

ρF
ρD

ln
1− YG

1− YD,s
. (2)

The characteristic time for droplet evaporation can be estimated as the droplet lifetime. Comparison of the evapo-
ration parameter ΛE with RHS of Eq. (1) then yields,

τE =
D2

ΛE
=

3

2

mD

ṁEV
. (3)

Particle momentum equation
Taking into account given application, the main forces acting on a particle (droplet) are the aerodynamic drag force,
a body force (gravity), and the buoyancy force. The equation of motion for both solid particles and evaporating
droplets can be written as,

d~rD
dt

= ~wD, (4)

mD
d~wD

dt
= −~FD +mD~g − ρGVD~g. (5)

Further simplification of the above equation is possible through introduction of the particle momentum response
time τM ,

d~wD

dt
= − ~wD − ~wG

τM
+

(
1− ρG

ρD

)
~g, τM =

4

3

ρDD

cDρG|~wD − ~wG|
. (6)

For spherical particles, the drag coefficient, cD, suggested by [17] or [19] can be used. Deforming droplets can be
considered using the approach published in [10].

Particle energy equation
Taking into account simultaneous heat and mass transfer (Stefan’s flow), particle energy equation can be written as,

mD
dcp,DTD

dt
= −πNuFZλFD(TD − TG) + hfg

dmD

dt
, (7)

where the correction to the heat transfer rate, FZ , due to the evaporation from the droplet surface is estimated
according to [21]. By introducing particle thermal response time, the above equation can be re-written to,

dTD

dt
= −TD − TG

τH
+

hfg

mDcp,D

dmD

dt
, τH =

ρDcp,DD
2

6NuFZλF
. (8)

Break-up modelling
For high-speed sprays, spray break-up is an important process that greatly influences spray formation. A hybrid
break-up model used in this work is a further extension of the model developed in [4]. It attempts to improve the
accuracy of the break-up predictions for high-speed sprays by combining two break-up models. The first break-up
model is used in the primary break-up region of the spray, where the initial continuous liquid jet disintegrates into
ligaments and droplets. In the downstream region of the spray, the second break-up model is used to predict further
breakup of the droplets.
A switching criterion is needed to decide which break-up model should be employed for a given droplet parcel. In
this work, all droplet parcels with the distance from the nozzle orifice exit shorter than a spray break-up length are
treated with the first break-up model. Droplet parcels that have already travelled beyond that distance are treated
with the second break-up model. The spray break-up length is estimated using the correlation proposed by Levich
[9],

LB = 5.5DINJ

√
ρD
ρG

. (9)
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Instability analysis
The breakup prediction within the breakup length region is done assuming that injected liquid jets become unstable
through Kelvin–Helmholtz instability. The continuous liquid jet is approximated by an injection of initial blobs. The
blob size is then reduced gradually in each time step due to shedding of secondary droplets. This approximates the
real primary break-up process under high jet velocities, where small droplets are gradually shed from the disturbed
liquid jet surface.
The model is based on the well-known linear instability analysis of a cylindrical liquid jet injected into an incompress-
ible gas developed in [10]. A curve fit of the numerical solution for the fastest growing wave of the Kelvin–Helmholtz
instability was developed in [10]. The model was further elaborated in [14], where small child droplets are shed from
blobs when the break-up occurs.
In the region beyond the breakup length, competing influences of both Rayleigh–Taylor and Kelvin–Helmholtz in-
stabilities are taken into account. Secondary droplet size is supposed to decrease gradually in each time step
until the droplet reaches its stable size. Kelvin-Helmholtz instability is calculated as described in the previous sec-
tion. For Rayleigh–Taylor instability, following [22], the frequency of the fastest growing wave, ΩRT , corresponding
wavelength, ΛRT , and wave number, KRT , are computed as follows,

ΩRT =

√
2

3
√

3σ

[a(ρD − ρG)]3/2

ρD + ρG
, ΛRT = 2π

B3

KRT
, KRT =

√
a(ρD − ρG)

3σ
. (10)

The acceleration of the droplet is calculated as a = |~wD − ~wG|/τM

Break-up rate prediction
With the maximum wave growth rates, Ω, and the corresponding wave lengths, Λ, for both Kelvin–Helmholtz and
Rayleigh–Taylor instabilities available, it is possible to predict the breakup time and the corresponding stable droplet
size,

Kelvin–Helmholtz Rayleigh–Taylor

τB,KH =
3.788B1D

2ΩKHΛKH
τB,RT =

BRT

ΩRT

Dstab,KH = 2B0ΛKH Dstab,RT = ΛRT = 2πB3

√
3σ

a(ρD − ρG)

(11)

B0, B1, BRT and B3 are the model parameters with the default values according to [14, 22] equal to 0.6, 13, 1
and 5.3, respectively. For both breakup modes, the size of a droplet undergoing break-up is supposed to reduce
gradually in each computational time step to its stable size according to the well-known break-up rate expression
suggested in [18],

dD

dt
= −D −Dstab

τB
. (12)

Within the breakup length region, the shed droplets create a new parcel with the droplet number NC and diameter
DC . The remaining liquid mass in the parent droplet parcel is re-grouped to create an updated parcel with the droplet
number NN and diameter DN . As this process should correspond to the break-up rate predicted by Eq. (12), the
equations for mass and Sauter mean diameter conservation are used,

ND3 = NND
3
N +NCD

3
C , D =

NND
3
N +NCD

3
C

NND2
N +NCD2

C

. (13)

In order to limit the total number of generated droplet parcels, the child droplet parcels are only created if the mass
of the predicted child parcel reaches at least 3% of the initial mass of the parent droplet parcel.

Numerical solution
Assuming constant fluid properties within the particle integration time ∆tD, the RHS of the particle mass balance,
see Eq. (1), is a function of the particle diameter. The integration is done in two stages using the trapezoidal rule
with the Euler’s first-order predictor.

m
(n+1/2)
D −m(n)

D

∆tD
= ṁ

(n)
EV , (14)

m
(n+1)
D −m(n)

D

∆tD
=

1

2

(
ṁ

(n+1/2)
EV + ṁ

(n)
EV

)
. (15)

A semi-implicit time integration is employed for both momentum and energy equations, see Eq. (6) and (8),

~w
(n+1)
D − ~w

(n)
D

∆tD
= − ~w

(n+1)
D − ~w

(n)
G

τM
+

(
1− ρG

ρD

)
~g, (16)

T
(n+1)
D − T (n)

D

∆tD
= −T

(n+1)
D − T (n)

G

τH
+

2hfg

cp,D∆t

m
(n+1)
D −m(n)

D

m
(n+1)
D +m

(n)
D

. (17)
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The break-up rate equation, see Eq. (12), formally corresponds to the particle momentum and energy balances, see
Eq. (6) and Eq. (8), and thus, it is solved in the same manner,

D(n+1) −D(n)

∆tD
= −

D(n+1) −D(n)
stab

τB
. (18)

The time step of the particle integration, ∆tD, is usually much smaller than that of the continuous phase integration
and is adjusted dynamically along the particle trajectory. The time step is limited due to a number of physical
restrictions:

• particle residence time τR = |~rD−~rF |/|wD|, for Face-to-Face particle tracking algorithms, the integration time
is restricted by the Courant criteria to avoid traversing of more than one cell boundary.

• response times, τE , τM , τH , see Eq. (3), (6) and (8), which correspond to the time scales of particle response
to the changes in the respective flow properties,

• breakup time, τB , that corresponds to the time scale of the droplet breakup process.

The particle integration time is thus chosen as,

∆tD = min(BRτR, BEτE , BMτM , BHτH , BBτB,KH , BBτB,RT ), (19)

where all the constants BX < 1 can be adjusted by the user. More restrictions can be imposed on the particle
integration time if further physical sub-models are employed, for instance a particle–eddy interaction time.

Phase coupling
The primary application of the model is high-speed sprays in automotive applications with highly separated two-
phase flows and rapid inter-phase exchange of mass, momentum and energy. The two-way coupling needs thus be
considered to account appropriately for the interaction between the phases.

Continuous flow field interpolation
Flow properties at the particle locations necessary for the solution of the discrete phase governing equations should
be recovered from cell–centred data of the continuous phase. To accomplish this, several interpolation approaches
have been proposed in the past including piecewise-constant interpolation, inverse distance weighting, tetrahedral
split and kernel functions, see [13, 20, 11]. In the current work, the kernel function approach is used.
The continuous flow quantity φG at the particle location is calculated as a weighted average of the cell centre values,

φG =
∑
i

ωiφi, ωi =
K(ξi)∑
j K(ξj)

, ξi =
|~rD − ~ri|

b
, ξj =

|~rD − ~rj |
b

(20)

The indices i and j will theoretically run over all cells. A suitable choice of the kernel function shape, K(ξ), ensures
that only neighbouring cells need be examined. The normalisation done in Eq. (20) ensures that

∑
ωi = 1 for any

form of the kernel function. The Gaussian function is a reasonable candidate. However, the following kernel function
is recommended in [23] due to efficiency considerations,

K(ξ) =

 (1− ξ2)4 for ξ < 1,

0 for ξ ≥ 1.
(21)

The choice of the bandwidth, b, influences the number of cells that are examined. Taking b between 1.5∆x and
2.5∆x with ∆x being the average cell size appears to be a suitable choice.

Inter-phase source terms
The coupling between the discrete and continuous phase is done through introduction of source terms in the con-
tinuous flow governing equations. For instance, the source therm for the gas flow continuity equation due to the
discrete phase evaporation is given by,

~SG,E =
1

∆tG

∑
k

[∑
n

ND,k

(
m

(n)
D,k −m

(n+1)
D,k

)]
(22)

where the particles are statistically grouped into so-called parcels, each of which containing a number of particles,
ND. The index k runs over the number of parcels traversing the cell within given time step, ∆tG, and the index n
runs over the number of particle time steps, ∆tD, necessary to complete the integration of the particle in given cell
within the gas flow time step, ∆tG. The source terms for the momentum and energy equations are defined in the
same manner.
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Source terms distribution
The source term in Eq. (22) is defined by summing the momentum source contributions from all droplet parcels
traversing the investigated cell within given time step. As an alternative, a more accurate method is also provided
taking into account the actual position of the droplet parcel within the computational grid formulated using kernel
functions. The contribution of a droplet parcel to the gas flow source is then applied not only to the droplet residence
cell but also to the neighbouring cells based on the relative distance from the particle location to the cell centres.
The above-mentioned approach is suggested in [8] using a quadratic function. Importance of the momentum source
term distribution not only over the particle residence cell is stressed in [7]. The source terms are distributed over the
neighbouring cells in the same way as the gas flow properties are interpolated, see Eq. (20), using the same shape
of the kernel function (Eq. (21)).

Particle tracking
Methods for tracking Lagrangian particles on a fixed or moving gas-phase computational mesh can be broadly
classified into two families - Lose-Find (LF) and Face-to-Face (F2F) (e.g. [13, 3]). The LF approach integrates
the equation of motion explicitly within the time-step defined by the governing equations of particle motion and
their associated constraints. Following the integration, the end position of the particle is found on the computational
mesh. LF algorithms can be suitable for small time steps usually imposed by the Lagrangian solver and are arguably
easier to implement. However the simplicity of LF algorithms does not extend easily to parallel simulations, where
implementation of an efficient search for the endpoint of particle trajectory requires complex data structures and
is computationally expensive. Furthermore, potential problems with parcels jumping over cells without interacting
with them leads to additional restrictions on the simulation Courant number. By contrast, F2F algorithms follow the
particle path by determining exit points of the particle trajectory in each cell, thus the resident cell of the particle and
the proportion of the trajectory residing in a given cell traversed by the particle are always known. However, explicit
F2F integration of the equations of motion with the adjustment of trajectory at each cell face intersection (e.g. [12]))
can introduce additional grid sensitivity into the solution. The tracking algorithm developed in VECTIS-MAX aims to
combine both approaches, resulting in the procedure described below.

Figure 1. Particle tracking schematic

Consider a particle P travelling from cell C0 where its position at time t is given by r(t). Fig. 1 illustrates two
possible scenarios in 2D for simplicity. In both scenarios, the end points r1(t + ∆t) and r20(t + ∆t) are located
cell C1. However in the first one the trajectory is fully contained within the cells marking the start and end points
of particle integration, whereas in the second scenario, the trajectory traverses a portion of cell C2. The algorithm
proceeds as follows:

• Cell-segment intersection analysis is performed based on the current and projected particle end position and
star triangulation of cell C0’s faces. Resulting in an exit face and the proportion of the trajectory residing in cell
C0 stored for source terms calculation. Star triangulation of the faces is done on the fly, but the face centroids
are readily available from the gas-phase solver.

• Scenario 1: The target cell C1 is determined as the exit face neighbour sharing face x1 and a fast ray-tracing
search confirms that cell C1 contains the final destination of the particle r1(t+ ∆t). The particle position and
residence cells are updated. The proportion of trajectory belonging to cell C1 has been already computed in
the previous step and is available for source terms calculation. Note that in this scenario, which is most typical
in simulations, traversing a face does not alter the integration of particle’s equations of motion.

• Scenario 2: Cell C2, the exit face neighbour of face x2 does not contain the end point of the predicted
trajectory r20(t+ ∆t). An automatic Courant number correction is performed by splitting the particle trajectory

This work is licensed under a Creative Commons 4.0 International License (CC BY-NC-ND 4.0).



ILASS – Europe 2019, 2-4 Sep. 2019, Paris, France

and integrating equations of motion again with the intersection point with face x2 as a starting point (as in
[12]), resulting in a modified end position r21(t+ ∆t) and proportions of trajectory residing in cells C2 and C1
respectively.

The above algorithm deals gracefully with warped faces and complex concave shapes of cells. It also yields itself
easily to parallel implementation within a domain decomposition/MPI approach and has been tested extensively on
various types of grids supported in VECTIS-MAX. It is worth noting that particles with trajectories traversing a cell
edge do not pose a problem as the identical ordering of face triangles for point-in-cell problem on both sides of
the face forms watertight volumes even when a tolerance is used to decide which side of an edge the trajectory
is intersecting. A particle trajectory traversing through a corner point shared by multiple cells can still result in a
particle being lost as re-positioning to a face intersection point might fail. In such cases, search for the re-positioned
particle has to be extended, however with application of shoe-boxing within each parallel partition, the detriment to
performance of such rare extended searches has been observed to be negligible.

Results and discussion
The developed discrete phase solver has been implemented into a commercial 3D CFD program VECTIS-MAX,
which is a tool for solving advanced industrial fluid flow problems, see [15, 16]. Examples of the simulations carried
out in order to test the overall code performance and accuracy are presented in this section.

Non-evaporating sprays
Based on experiments by Allocca et al. [1], a single-hole nozzle injection using a diesel type injector has been
simulated. Liquid tetradecane is injected into a vessel at room temperature and an elevated gas pressure, see the
conditions summarised in Tab. 1. As evaporation is suppressed under given conditions, the test case is suitable for
a validation of the break-up models and spray–gas momentum coupling. Results of the simulation and experimental
data are compared using the spray liquid penetration. The simulated liquid penetration is defined as a distance from
the nozzle outlet to the farthest position encompassing 95% of the injected mass. The results are shown in Fig. 2.
The agreement of the simulation with the experiment is excellent.

Table 1. The basic conditions of the single-hole nozzle spray simulations according to [1]

Nozzle orifice diameter 0.2 mm

Maximum injection pressure 100 MPa

Ambient gas pressure 1.7 MPa

Ambient gas temperature 300 K
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Figure 2. The simulated and experimental liquid penetrations and simulated spray plumes at various times after start of injection
(t = 0.3, 0.6, 0.9 ms).

In addition, there are no apparent grid artefacts in the side and axial views of the spray in Fig. 2. Grid artefacts
are common for simulated sprays if the exchange of flow properties between a particle and continuous flow is done
solely through the particle residence cell. An asymmetric spray formation aligned with grid principal axes is often
obvious. In the developed model, the use of kernel functions for the evaluation of continuous flow properties as well
as for the distribution of discrete-phase source terms to the continuous flow reduces significantly the influence of
underlying Cartesian grid on the spray formation.
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Evaporating sprays
A single-orifice nozzle injection at elevated pressure and temperature has been simulated based on the well-known
Spray A from the Engine Combustion Network, see [24]. An overview of the experimental conditions is given in
Tab. 2. In Fig. 3, simulation results are compared with the experimental data using the spray liquid and vapour
penetrations. The simulated vapour penetration is defined as a maximum distance from the nozzle outlet where the
fuel mass fraction exceeds 0.1%. Fig. 4 shows simulated and experimental gas velocity profiles in radial direction at
40 mm from the injector exit. The agreement of the simulation results with the experiment is very good in all cases.
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Figure 3. The simulated and experimental liquid (left) and vapour (right) penetrations for ECN Spray A case.

The relative costs of the discrete phase solution differ significantly in dependency on both the computational grid
geometry and the injection set-up. Nevertheless, for given case, the overall time spent by discrete phase solver
accounts for only ~2% of the total computational time.

Table 2. The basic conditions of the ECN Spray A simulations
according to [24].

Nozzle orifice diameter 0.09 mm

Fuel injection pressure 150 MPa

Fuel temperature at nozzle 363 K

Fuel n-dodecane

Ambient gas pressure 6.0 MPa

Ambient gas temperature 900 K
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Figure 4. The simulated and experimental gas velocity profiles
at 40 mm from the injector for ECN Spray A case.

Conclusions
A novel feature-rich Lagrangian discrete phase solver has been developed and applied to high-speed liquid sprays
simulations. The solver has been implemented in VECTIS-MAX, a the 3D CFD tool for solving advanced industrial
fluid flow problems. The solver features a set of detailed physical sub-models which are particularly suitable for
high-speed sprays.
Up-to-date approaches to the spray breakup modelling are adopted. The hybrid breakup model improves the
accuracy of the breakup predictions for a wide range of conditions found in high-speed sprays by combining two
breakup models. A kernel-function approach has been used for evaluation of the coupling between the discrete
phase and continuous flow which minimises undesirable effects of the computational grid on the spray formation
prediction. To maximise the efficiency of the time integration of the discrete phase equations, an advanced face-to-
face tracking algorithm with a variable time step control based on the particle response times has been implemented.
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The computational costs of the discrete phase solver have been found to be reasonable by comparison with the
overall cost of the 3D flow solution.
The implemented solver has been applied to a number of test cases with different injector geometries and with
the injection pressures up to the level typical for modern diesel engines. The predicted sprays were validated with
experimental data demonstrating good accuracy of the discrete phase solver.

Nomenclature

a acceleration [m s−2]
A area [m2]
B model parameter [-]
cP isobaric specific heat [J (kg K)−1]
CD droplet drag coefficient [-]
D diameter [m]
D binary diffusion coefficient [m2 s−1]
~F force [N]
FZ heat transfer rate correction factor [-]
~g body force acceleration [m s−2]
hfg specific enthalpy of vaporisation [J kg−1]
K wave number [m−1]
LB break-up length [m]
m mass [kg]
ṁEV droplet mass evaporation rate [kg s−1]
N droplet number [-]
~r positional vector [m]
t time [s]
~w velocity [m s−1]
Y mass fraction [-]
∆t time step [s]
φ generic quantity [-]
λ thermal conductivity [W (m K)−1]
Λ wavelength [m]

ΛE evaporation parameter [m2 s−1]
ξ bandwidth [m]
µ dynamic viscosity [Pa s]
ρ density [kg m−3]
σ surface tension [N m−1]
τ time [s]
Ω wave growth rate [s−1]
Subscripts
0 initial condition
B break-up
C child droplet
D droplet
D, s droplet surface
F film conditions
G gas
INJ injection nozzle
i, j gas cell indices
k droplet parcel index
KH Kelvin–Helmholtz instability
n time step index
N updated droplet parcel
RT Rayleigh–Taylor instability
stab stable droplet
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