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Abstract
Drop impact on a dry/wetted wall is of relevance to many industrial applications as well as to natural sciences.
For some applications, such as spray coating or icing of plane wings, both the maximum spreading diameter and
the residual thickness of the wall film are of paramount importance for the efficient design and optimisation of the
different technologies. In this paper, we propose a modification to existing models for crown propagation and residual
film thickness based on stagnation-point flow solutions. It is generally accepted that the position of the crown base
exhibits a square-root dependence on time, whereby the constant of proportionality C is inversely proportional to
the fourth root of the initial film thickness h0. We introduce the following two modifications. First, we include the
thinning of the initial film thickness, which is no longer considered to be constant. The evolution of the film thickness
is obtained directly from the potential flow theory for stagnation-point flow. Second, the constant C is modified
to include the momentum losses in the spreading lamella due to boundary layer effects. For the estimation of
viscous losses, two different exact solutions of the Navier-Stokes equations are considered with different boundary
conditions. The first analytical solution is based on the classical Hiemenz flow solution for droplet impingement on
a dry wall. In the second approach, the classical Hiemenz solution is extended to orthogonal stagnation-point flow
against a fluid film, resting against a plane wall. This second approach enables for the first time to evaluate the effect
of sliding on the crown propagation due to the presence of a liquid wall film. A comparison of the two solutions for
the standard and extended Hiemenz-flow is discussed for a few representative test cases. Both solutions lead to a
significant improvement in the prediction of the crown propagation rate compared to inviscid models. The preliminary
results show that the inclusion of sliding effects becomes increasingly important with increasing wall films thickness
(δ = h0/D0 > 0.3), where the inception of viscous losses is temporally delayed, as confirmed by experiments.
The advantages of the stagnation-point flow approach are twofold. First, it enables a smooth transition from the
inertia-driven to the viscous-controlled regime of crown propagation. Second, it lays the foundation for modelling
continuously the transition from low-viscosity to high-viscosity wall films and for assessing how the viscosity ratio
affects the spreading rate of the crown.
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Introduction
Drop impact on a dry/wetted wall is of relevance to many industrial applications as well as to natural sciences, such
as soil erosion, pesticide sprays, spray coating and IC engines. Immediately after the impact, the droplet diameter
expands radially along the surface and may generate an upward growing crown, provided the impact kinetic energy
is sufficiently high (splashing regime). For some specific applications, such as spray coating or icing of plane wings,
both the maximum spreading diameter and the residual thickness of the wall film are of paramount importance for the
efficient design and optimisation of the different technologies. From a theoretical point of view, it is generally agreed
to model the crown as a kinematic discontinuity, thereby neglecting the influence of viscous losses. This assumption
dates back to the pioneering work of Yarin and Weiss [1], who proposed a theoretical square-root dependence for
the crown base radius RBase upon the non-dimensional time τ : RBase = C

√
(τ − τ0). Here τ0 corresponds to

the initial value at the moment of impact. The non-dimensional constant C was determined empirically by fitting
the experiments of Levin and Hobbs [2], according to C = [2/(3δ)]1/4. The square-root dependence is adopted by
several authors with slight modifications to the empirical constant C [3, 4, 5, 6]. A controversial issue is whether the
parameter C depends also on the Weber and Reynolds number. According to Refs. [6, 3, 7, 8], the crown diameter is
independent of the Weber and Reynolds number. This conclusion, however, is not shared by Fujimoto et al. [9], who
showed that surface tension plays an important role on the evolution of the crown diameter. This controversy was
recently clarified by Gao and Li [10], who introduced a correction factor λ0 to the parameterC = [2λ2

0/(3δ)]
1/4 to take

into account the liquid film inertia and the energetic losses due to deformation. This basically implies the velocity of
crown propagation in the inviscid theory is reduced compared to the impact velocity by the factor λ0 (u∞ = λ0U0).
The latter was determined empirically according to λ0 = 0.26Re0.05/(We0.07δ0.34). The correlation shows that the
dominating effect is provided by liquid inertia and only a weak dependence on We and Re is observed. These
findings have been confirmed by the numerical simulations of Davidson [11], who showed that, at the moment of
impact, surface energy losses can amount up to 10% of the total impact kinetic energy.
Geppert et al. [12] compared the predictions from different models with experiments. The results are summarised in
Figure 1 for two representative models and two different non-dimensional wall film thicknesses. As can be seen, all
inviscid models overestimate the spreading rate of the crown base radius and exhibit a reverse δ-dependency with
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Figure 1. Temporal evolution of the crown base radius: comparison between experiments and inviscid models. Fluids:
n-hexadecane for both droplet and wall film. We ≈ 1330.

respect to the experiments. For inviscid theories, with increasing δ the wall film inertia increases, thus resulting is a
slower spreading rate. In the experiments, the opposite is observed. Three elements can contribute to explain this
discrepancy: the sliding of the impacting droplet on the wetted wall and boundary layer effects, enhanced by the
decrease of the wall film height during the spreading of the crown. Sliding effects have never been investigated either
experimentally or theoretically. Boundary layer effects have been studied by several authors [5, 13, 14]. Marcotte et
al. [14] showed that the crown spreading consists out of two distinct sheets, originating from the droplet and liquid
film, respectively. They evolve on separate timescales and the merging time is mainly depending upon the viscosity
ratio. Roisman [13] solved analytically the axisymmetric instationary viscous flow in a spreading film, generated by
normal drop impact onto a rigid, planar, dry substrate. He also provided an expression for calculating the height
of the residual film thickness. The existence of a residual film thickness has been confirmed experimentally also
by Kuhlman et al. [15]. The authors measured the cavity film thickness for single droplet impact on a wetted wall
in the range 140 ≤ We ≤ 1000 and 0.2 ≤ δ ≤ 1.0 and demonstrated the existence of a constant thickness region
(sub-cavity) within the crown base area. Despite the noteworthy progress, none of the above studies led to the
formulation of a model for the crown spreading rate that encompasses all the above mentioned effects.
In this paper, we present an analytical approach based on stagnation-point flow. It includes two different exact
solutions of the Navier-Stokes equations, obtained for different boundary conditions. The first analytical solution is
based on the classical Hiemenz flow solution for droplet impingement on a dry wall. A detailed description of this
method can be found in [16]. In the second approach, the classical Hiemenz solution is extended to orthogonal
stagnation-point flow against a fluid film, resting on a plane wall. This second approach enables for the first time to
evaluate the effect of sliding on the crown propagation due to the presence of a liquid wall film.

Analytical solutions for stagnation-point flow
The modelling strategy is based on the geometrical resemblance of the droplet impact against a solid substrate
and the two-dimensional, orthogonal stagnation-point flow (SPF), as shown in Figure 2 for impact on a dry surface
and on a liquid film. From a mathematical point of view, the main difference between the two configurations is
the inclusion of a free surface, where a kinematic condition of equal velocities and tangential stresses is applied
between the upper and lower fluid. The origin of the coordinate system is set at the point P (stagnation point)
with the coordinate axis directed as shown in Figure 2(a). In both configurations, the impacting droplet transmits
a contact impulse to the liquid substrate, which is pushed down towards the wall. In our approach, the decay of
the wall-film height is derived directly from the potential theory for stagnation-point flow. The momentum losses,
associated with the spreading of the liquid film parallel to the wall, are estimated by employing the similarity solution
for the velocity components in the ensuing boundary layer (Hiemenz flow) [19].

Decay rate of the film thickness
We assume that far away from the solid wall, the flow distribution within the impacting droplet is a frictionless
potential flow (see Figure 2). The x- and y-velocity components of the potential flow can be expressed as u = ax
and v = −ay, where a is the strength of the potential flow. Its value can be estimated either through a semi-empirical
procedure described in [16], or from the initial conditions a = λ0U0/D0. Basically, the constant a represents the
momentum per unit length transmitted by the droplet to the liquid film at the moment of impact. Indicating with h0

the initial wall film thickness, the decrease in wall film thickness can be expressed as h(t) = h0−ayt. Being at each
time instant h(t) = y, it yields [18]

h(t) =
h0

1 + at
. (1)
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(a) Impact on a dry wall.
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(b) Impact on a liquid wall film.

Figure 2. Schematic drawing of the droplet impact against a dry wall (a) and a liquid wall film (b), respectively.

Equation 1 implicitly assumes that there are no losses in the transmission of momentum from fluid 1 to fluid 2. This
assumption is fulfilled for low viscosity fluids, such as n-hexadecane considered in this work for both the upper and
lower fluid. For fluids with higher viscosity, momentum losses may need to be included in the estimation of the
factor a. Figure 3 shows the decay of the wall film thickness for three representative test cases, discussed in Figure
9. The horizontal lines represent the thickness of the flow boundary layer hBL = 2.4

√
ν/a. As can be seen, the

assumption of inviscid flow is justified only in the initial phase of crown propagation until the intersection with the
boundary layer height hBL. This explains why, for the (δ = 0.2) case in Figure 1, the Gao and Li [10] model starts
deviating from the experiments as of τ ≈ 5, which corresponds to a physical time t ≈ 2.5 s in Figure 3. Note that the
importance of boundary layer effects increases with decreasing initial film height h0. As a result, the discrepancy
between inviscid models and experiments increases accordingly.

Figure 3. Temporal evolution of the wall film height for the experiments shown in Figure 9, where test conditions and a values are
specified. In the figure hBL denotes the thickness of the boundary layer.

Extended Hiemenz flow
Following the methodology laid out by Hiemenz for impact on a dry wall, as described in Schlichting and Gersten
[19], and by Wang [17] for impact on a liquid film, one seeks a similarity solution for the velocity components in both
fluid layers (1 and 2). The coordinate system in the self-similar domain is shown in Figure 6 for both configurations.
For the upper fluid (1), it holds

η =

√
a

ν1
y, f(η) =

ψ

x
√
ν1a

, u1 = axf ′(η) v1 = −
√
ν1af(η) (2)

where ψ is the stream function and u1, v1 are the velocity components in the upper fluid of the stagnation-point flow.
The transformed ordinary differential equation reads then as follows:

f ′′′(η) + ff ′′ − f ′2 + 1 = 0 (3)

subject to the boundary conditions of sliding (β) at the interface (η = 0) and inviscid flow limit (η →∞):

η = 0 : f = 0, f ′ = β; η →∞ : f ′ = 1. (4)

Hence, the variable β represents the non-dimensional tangential component of the fluid velocity at the interface.
Its value varies from zero (solid boundary) to one (inviscid boundary). Hence, for β = 0 we recover the classical
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Hiemenz solution and for β = 1 the solution for fluid 1 is potential (f = η). Three representative self-similar profiles
for the function f and its first derivative are shown in Figure 4. For the lower fluid (2), it holds

ζ =

√
a

ν2β
y2, u2 = aβxg′(ζ), v2 = −

√
ν2aβg(ζ) (5)

and the Navier-Stokes equations reduce to

g′′′(ζ) + gg′′ − g′2 = 0 (6)

with no-slip boundary conditions at the solid wall (ζ →∞) and equal tangential velocities (u1 = u2) at the interface
(ζ = 0):

ζ = 0 : g = 0, g′ = 1; ζ →∞ : g′ = 0. (7)

Contrary to the function f(η), the function g(ζ) is universal and independent of β. For the two-dimensional SPF, it
is possible to find a closed form solution for equation (6) [17]:

g = 1− e−ζ . (8)

The variation of the function g and its derivative g′ in the self-similar domain is depicted in Figure 5 (a).

(a) The function f(η). (b) The function f ′
(η).

Figure 4. Extended Hiemenz similarity solution for different values of the constant β in the upper fluid layer.

(a) Self-similar solution g(ζ), g′(ζ). (b) Tangential, self-similar velocity profiles.

Figure 5. (a) Self-similar solution in the lower fluid layer. (b) Coupling of the self-similar solutions for different sliding values (β).

The final step is then to determine the appropriate sliding value β for a given droplet impact experiment. Following
Wang [17], the factor β can be derived by imposing continuity of tangential stresses at the interface:

ρ1ν1
∂u1

∂y
= −ρ2ν2

∂u2

∂y
. (9)

This yields the following relation for determining β through an iterative procedure:

f ′′(0)

−β3/2g′′(0)
=
ρ2
ρ1

(
ν2
ν1

)1/2

= K. (10)
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The results of this exercise are presented in [17] and have been summarised here in the following correlation

β = 0.548 e−0.7456K + 0.4195 e−0.05873K . (11)

As soon as the factor β is known, the self-similar solution for the upper fluid can be determined numerically with
a shooting method. The coupling of the solutions for three representative cases is illustrated in Figure 5 (b). Note
that, due to the kinematic condition (u1 = u2), the curve g′(ζ) is scaled with β and vanishes for β = 0. The opposite
is observed for β = 1, where no losses are predicted and the interface velocity converges towards the inviscid limit:
f ′ = g′ = 1 and hence u1 = u2 = ax.

1 fluid conditions 2 fluids conditions
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ζ
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η
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Figure 6. Schematic drawing of the velocity profile in the boundary layer for the one and two-fluids configurations, together with
the associated self-similar coordinate systems.

Results and discussion
This section describes our method for estimating the momentum losses and its integration in current inviscid models
for crown propagation. This approach enables a continuous, smooth transition from the inertia-driven (negligible
losses) to the viscous-controlled regime of crown propagation.

Estimation of momentum losses
The self-similarity of the solution of the extended Hiemenz flow allows for a straightforward estimation of momentum
losses in the boundary layer. The latter can be estimated by introducing a profile-averaged non-dimensional velocity
in both the upper and lower fluid according to:

ū

u∞
=

1

ζmax

∫ 0

ζmax

βg′dζ +
1

ηmax

∫ ηmax

0

f ′dη (12)

where ζmax represents the total height of the lower fluid in self-similar coordinate. For all practical purposes, it can
be assumed (ζmax = 7), being g′(7) = 0. As pointed out in [20], the solution g(ζ) is equivalent to that of a stretching
plate, where the vorticity created at the plate is confined to a region near the wall of thickness ζmax. In the droplet
impact problem, the stretching plate is replaced by the interface between the two liquids, as shown in Figure 6. The
height of the upper fluid layer ηmax converges to the potential flow solution and hence coincides with the scaled
height of the wall film in the physical coordinate system, i.e. ηmax

√
a/ν1h(t). At the instant of impact, due to sliding

effects, part of the fluid in the lower layer is pushed outwards so that the interface between the two fluids is located
below h0. Its position in the physical coordinate system is not known. However, in the self-similar domain, it is
always conveniently located at (η = ζ = 0), so that equation (12) can be integrated directly without requiring the
accurate tracking of the interface location in time. Finally, the classical Hiemenz solution is recovered automatically,
being g′(ζ) = 0, ∀ζ. This implies that the presence of the wall is felt immediately across the entire film height. The
integration of equation (12) yields:

ū

u∞
= β

g(0)

ζmax
+
f(ηmax)

ηmax
(13)

It is important to realise that not only ηmax, but also β is not constant in time. Specifically, we made the following
assumptions:

1. If h(t) > hBL, it holds β = K =
ρ2
ρ1

(
ν2
ν1

)1/2

.

2. If h(t) < hBL, the tangential velocity (sliding) at the interface starts to decrease, yielding β(t) = β(t− 1)g′(ζ).
In other words, the self-similar solution g(ζ), which is independent of β, provides the rate of decrease of the
tangential velocity/sliding with decreasing film height.
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As an example, the temporal evolution of the parameter β is shown in Figure 7 (a) for two different film heights. All
experimental conditions are provided in Figure 9. As can be seen, the lower the non-dimensional film height, the
earlier the parameter β approaches the dry-wall solutions (β = 0). With increasing film height, the sliding remains
constant over a longer time, thus inducing minor momentum losses in the upper layer, as shown in Figure 7 (b).
Consequently, the discrepancy in predicted momentum losses between the 1-fluid and 2-fluid approach increases
with increasing film height (see Figure 7 (b)). Note that the most significant part of the momentum losses occurs
in the upper fluid, as shown in Figure 8 for a representative test case. As mentioned earlier, the lower fluid can be
mainly considered as a vorticity layer, which is then convected away as soon as its thickness vanishes. Despite this
uneven repartition, it is clear that the total momentum losses due to viscous effects cannot be neglected during a
significant portion of the crown propagation, particularly for thin wall films. This explains the discrepancy between
inviscid models and experiments, observed in Figure 1. Note that ηmax decays in time with the film thickness,
being

√
a/ν h(t). Hence the profile-averaged velocity is calculated over an increasingly smaller length scale, thus

inducing a significant increase in momentum losses.

(a) Temporal evolution of β. (b) Temporal evolution of momentum losses ū/u∞.

Figure 7. Temporal evolution of the sliding parameter β (a) and of the total momentum losses ū/u∞ (b) for two representative
experiments. The corresponding test conditions are specified in Figure 9.

Figure 8. Temporal evolution and repartition of momentum losses between the upper and lower fluid layer. Fluids: n-hexadecane
for both droplet and wall film. We ≈ 1330

The above estimation of momentum losses can now be incorporated in the modelling of the crown propagation. As
a first step, the averaged velocity is transformed back to the physical coordinate system according to

ū

u∞
= β(t)

1

7
√
ν2β/a

+
1√
a
ν
h(t)

f

(√
a

ν
h(t)

)
. (14)

Recall that u∞ denotes the velocity outside the boundary layer as determined by potential theory and set equal to
u∞ = λ0U0. As stated earlier, this choice takes into account the energetic losses due to deformation during droplet
impact. Following Gao and Li [10], we can define a new correction factor λAG according to

λAG =
ū

U0
= λ0

[
β(t)

1

7
√
ν2β/a

+
1√
a
ν
h(t)

f

(√
a

ν
h(t)

)]
. (15)
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(a) One-fluid stagnation point flow. (b) Two-fluids stagnation point flow.

Figure 9. Temporal evolution of the crown base radius: comparison between experiments, an inviscid model [1] and SPF-based
models. Fluids: n-hexadecane for both droplet and wall film. We ≈ 1330.

Finally, the crown base propagation is modelled as follows

RBase
D0

= 0.5 +

(
2λ2

AG

3δ

)1/4√
τ . (16)

The use of the variable factor λAG takes into account the effect of increasing viscous losses during crown prop-
agation. The initial value τ0 can be set to zero, because the time origin is known accurately. The tracking of the
crown radius starts as soon as the droplet is no longer visible in the images. This occurs approximately when the
crown radius equals the droplet radius, thus explaining the 0.5 shift. The classical Hiemenz solution is recovered
immediately by setting the value of β to zero in Eq. (15). A comparison between the 1-fluid and 2-fluids solutions is
shown in Figure 9 for three representative experiments. As can be seen, for δ < 0.3, both solutions provide almost
identical results. Due to the rapid decay of the sliding parameter, the 2-fluids solutions rapidly draw near to the
classical Hiemenz solutions and only minor deviations are obtained in the associated f(η) profiles. For the δ = 0.3,
the presence of significant sliding effects over a prolonged time reduces the momentum losses. This effect can only
be reproduced by the 2-fluids approach, leading to a more accurate prediction of the crown spreading rate.
The proposed modelling strategy provides a significant step forward in the prediction and understanding of crown
propagation on wetted walls. It also provides a logical explanation for the reverse δ-dependence observed in the
experiments with respect to inviscid models. In addition, based on the recent findings from Marcotte et al. [14], it
provides a straightforward explanation for the different timescales observed numerically on the spreading rate of the
corolla.

Conclusions
This paper discusses a new approach for modelling the crown propagation, based on stagnation-point flow solu-
tions. We mainly introduce the following two modifications. First, the initial film thickness is no longer considered a
constant. The evolution of the film thickness is obtained directly from the potential flow theory for stagnation-point
flow. Second, we include an estimation of momentum losses in the modelling of the lamella’s spreading rate due
to boundary layer effects. For the estimation of viscous losses, two exact solutions of the Navier-Stokes equations
are considered with different boundary conditions: impact on a dry wall (Hiemenz flow) and on a liquid film, resting
against a plane wall (extended Hiemenz flow). This second approach allows, for the first time, to evaluate the effect
of sliding on the crown propagation due to the presence of a liquid wall film. The shear stresses at the interface
between the two fluids create a vorticity layer, close to the wall, that acts as buffer and reduces the momentum
losses in the upper fluid layer. As a result, momentum losses are significantly reduced with increasing initial film
thickness. This trend is corroborated by experiments, while inviscid models lead to opposite conclusions. For thin
liquid films (δ ≤ 0.2), the sliding parameter β decreases very rapidly and the prediction of momentum losses in
the 1-fluid and 2-fluids solutions are basically identical. The latter are estimated by introducing profile-averaged
velocities for both fluid layers. Our analysis shows that the momentum losses are negligible in the early phase of
crown propagation and become increasingly important with reducing film height. This enables a smooth transition
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from the inertia-driven to the viscous-controlled regime of crown propagation.
More in general, the present work lays the foundation for analysing the effect of sliding for droplet impingement
on wall films of different viscosity. This will enable, for the first time, to model continuously the transition from
low-viscosity to high-viscosity wall films and assess how the viscosity ratio affects the overall crown spreading and
splashing dynamics.
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Nomenclature
a strength of the potential flow [s−1], a = U0/D0

β self-similar tangential velocity component at the interface [-]
C proportionality constant [-], C = 2λ2

AG/(3δ)
δ non-dimensional film thickness [-], δ = h0/D0

D0 initial droplet diameter [m]
η self-similar coordinate normal to the solid wall for fluid 1 [-], η = y

√
a/ν1

F force [N]
h0 initial wall film height [m]
K non-dimensional flow constant [-], K = ρ2/ρ1(ν2/ν1)(1/2)

λ0 correction factor encompassing deformation losses [-]
λAG new correction factor encompassing deformation and viscous losses [-]
ν kinematic viscosity [m2 / s]
RBase crown base radius [m]
Re Reynolds number [-], ρU0D0/µ
ρ density [kg/m]
σ surface tension [N/m]
τ non-dimensional time [-], τ = tU0/D0

t time [s]
U0 droplet impact velocity [m/s]
We Weber number [-], ρU2

0D0/σ
x coordinate for the horizontal axis [m]
y coordinate for the vertical axis [m]
y2 coordinate for a second vertical axis for fluid 2 [m]
ζ self-similar coordinate normal to the solid wall for fluid 2 [-], ζ = y2

√
a/(ν2β)

SPF Stagnation Point Flow
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