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Abstract 
The electrification mechanism inside the electrostatic atomizers and the constituted layer adjacent to the electrode 
are investigated numerically. The formation of the polarized diffuse layer across the electrode and inside the 
atomizer is studied through an appropriate, realistic model. This model accounts for the discharge of the counter-
ions at the interface of the diffuse and compact layers through well-known faradaic reactions. These reactions at 
the interface are taken into account through Frumkin-Butler-Volmer kinetics equation derived from our previous 
experimental measurements. Fixed flux boundary conditions for the ions predict the concentrations at the interface 
of the diffuse and compact layers and inside the diffuse layer. The computational domain starts from the interface 
of the compact and diffuse layers and extends toward the bulk flow region inside the electrostatic atomizer. The 
components of the ionic transport equation are studied in a sample two-dimensional micro-channel configuration. 
The numerical solver is developed within the OpenFOAM platform and is previously validated through the available 
numerical benchmarks.  
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Introduction 
Electrostatic atomization systems are considered as an attractive option for terrestrial and aerial applications due 
to the higher efficiency of atomization, especially in the case of highly viscous fluids [1]. These systems provide 
enhanced spray dispersion and higher controllability of spray trajectory [2,3]. Also, they avoid problems of 
customary injection systems such as uneven or over-application of oil droplets. The suitable fluids for electrostatic 
atomizers are poorly conducting liquids which provide enhanced charge residence time in contrast to conducting 
liquids. 

Poorly conducting liquids in the scope of electrohydrodynamic phenomena are described as leaky dielectric liquids 
which are fundamentally different than the perfect dielectrics [4]. Their small electric conductivity values allow them 
to possess a small amount of net charge. Liquids such as transformer oils, refrigerants, and various organic solvents 
lie within the concept of poorly conducting liquids or weak electrolytes in the framework of electrochemistry [5]. The 
model put forward by Taylor [4], Melcher & Taylor [6] and later by Saville [7] elaborates some hydrodynamic 
phenomena of the application of electric fields to such liquids by charge transport in them. In these applications 
such as the electrostatic atomization, ions are considered as the charge carriers. 

In electrostatic atomizers, electrodes are metals acting as perfect conductors (iso-potential conductors) [8]; which 
can sustain electric current and impose zero tangential electric fields [9,10]. Irreversible faradaic reactions take 
place at the surface of the metallic electrodes inside electrostatic atomizers [11]. The kinetic-limited regime (rather 
than the diffusion-limited) faradaic reactions are responsible for the electrification of poorly conducting liquids in 
these atomizers. In the kinetic-limited regime, the electric current is regulated kinetically by the reaction rate rather 
than by the supply rate from the diffusion. Ions are discharged and become neutralized, or neutral species are 
charged and become ions through these sustained faradaic reactions. The kinetics of these reactions follow the 
well-known Frumkin-Butler-Volmer equation in electrochemistry [12,13].  

The Frumkin-Butler-Volmer kinetic-based nature of faradaic reactions at the electrode surface composes distinct 
layers including the compact and diffuse layers [14,15]. The imposed electric potential at the electrode surface has 
a major role in the creation of these layers. In ionic conductors, such as water, a compact layer is formed by ionic 
crowding at the surface of the electrode due to the high electrode potential [15]. However, in poorly conducting 
electrolytes such as vegetable oils, which are of interest in the current study, ion crowding is not deemed as the 
dominant mechanism. In such liquids, the non-specific (non-electric) adsorption is known as the causing mechanism 
[16].  
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The previous computational studies on electrification inside electrostatic atomizers are based on charge injection 
theory [17,18]. In this approach, a single transport equation is solved for the charge density inside the computational 
domain [19]. The experimentally observed and measured electric current density and counter-ion flux do not play a 
direct role in the presented models. However, they propose methods to estimate the magnitude of the charge at 
the electrode surface as a fixed value. This estimation provides a Dirichlet-type boundary condition instead of 
accounting for the faradic reactions. None of the previous studies accounted for the electrification mechanism inside 
the electrostatic atomizers. Taking a closer look at the near-electrode constituted layers and the formation 
circumstances of these layers provide valuable information on the mechanism of creation of charge carriers in 
poorly conducting liquids and facilitate development of computational models that predict the performance of the 
electrostatic atomizers. 

The first work considering ionic flux boundary conditions due to the faradaic reactions at the electrode surface is 
performed by Bazant et al. [20,21]. However, these works were for low voltage electrochemical cells of aqueous 
solutions with low flux values at the electrode surface. The applied potentials at the electrodes in electrostatic 
atomizers are multiple orders of magnitude higher than the conventional electrochemical cells. Moreover, the 
electrolyte is composed of poorly conducting liquids (for instance, vegetable oils) rather than the strong conducting 
electrolytes.  

The present work predicts the poorly conducting liquids electrification in contact with the conducting electrodes 
(metals) carrying a sustained electric current which is the common case in electrostatic atomizers. Also, we 
demonstrate the constituted near-electrode polarized diffuse layer which is predicted through the numerical 
simulations. Realistic conditions inside the electrostatic atomizers are taken into account through appropriate ionic-
flux boundary conditions accounting for the discharge of counter-ions at the electrode surface through the faradaic 
reactions.  
 
Governing equations  
The Open Field Operation and Manipulation (OpenFOAM) C++-based library is used as the computational platform 
to build and develop the required numerical tools [22]. The governing equations for the electrohydrodynamic flow 
of poorly conducting liquids inside the electrostatic atomizers include the continuity, momentum, ionic transport, 
and the Poisson equations. 

The incompressible fluid flow governing equations including the continuity and momentum equations are as follows: 
 ∇ ∙ 𝐕∗ = 0         (1) 

 ρ∗ ቂ
ப𝐕∗

ப୲∗
+ (𝐕∗ ∙ ∇)𝐕∗ቃ = −∇p∗ + μ∇ଶ𝐕∗ + q∗𝐄∗ + q∗𝐄∗ୣ୶୲     (2) 

Here, * marks the dimensional variable. 𝐕∗ is the velocity field vector; ρ∗ is the density; t∗ is the time and p∗ indicates 
the pressure. q∗ = e(c∗

ା − c∗
ି) is the bulk charge density with c∗

ା and c∗
ି being the cation and anion concentrations, 

respectively, and e the elementary charge. 𝐄∗ = −∇φ∗ identifies the electric field imposed by the self-induced electric 
potential (φ∗) inside the atomizer through imbalanced ion concentrations. 𝐄∗ୣ୶୲ refers to the externally applied 
electric field (in case of presence). It is important to note that the last two terms in the momentum equation describe 
the Coulombic body force related to the presence of net charge due to the polarization in the near-electrode layers.  

Also, the cation and anion transport equations and the Poisson equation addressing the self-induced electric 
potential are as follows, respectively: 
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 ∇ଶφ∗ = −
୯∗

ககబ
         (5) 

where k୆ is the Boltzmann constant; T is the temperature and D is the diffusivity coefficient. Also, ε is the relative 
permittivity and ε଴ indicates the vacuum permittivity.  

In this paper, the electrohydrodynamic flow case of canola oil is considered, which has been concurrently studied 
experimentally by the present group [10,11]. The electric conductivity of canola oil is measured to be 𝜎 =

2.6 × 10ିଵଵ Smିଵ . The relative dielectric permittivity ε is taken to be 3. This yields the charge relaxation time τୡ =

εε଴ σ⁄  equal to 1 s. The diffusion coefficient of canola oil is reported to be D = 10ିଵଵ mଶsିଵ in room temperature 

[23]. This provides the Debye screening length to be λୈ = (Dτୡ)ଵ/ଶ = 3.16 μm.  

The bulk ion concentration (c∗ஶ) is calculated to be in the order of 10ଵ଻ mିଷ from the following relation [24]: 

 c∗ஶ =
ககబ୩ా୘

ଶୣమ஛ీ
మ          (6) 

The numerical solver has been previously validated through distinct one- and two-dimensional benchmarks [25,26] 
and provides a reliable ground to study the electrohydrodynamic flow of canola oil inside the electrostatic atomizers. 
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The concurrent experimental measurements of canola oil have provided an electric current-voltage relation for the 
discharge of counter-ions at the electrode surface [10,11] considering the Frumkin-Butler-Volmer kinetics as: 

 Jୣ∗ = j଴∗10ቄቀି
౒బ∗

మ
ାநభቁ ୠౙൗ ቅ = 10

ቄ൬ି
౒బ∗

మ
ି(ୟౙିநభ)൰ ୠౙൗ ቅ

  ቂ
୅

ୡ୫మ
ቃ     (7) 

where j଴∗ is the exchange current density, −V଴∗/2 is the applied voltage at the cathode, aୡ − ψଵ and bୡ are the 
experimentally measured coefficients equal to -291,83.0 V and -3,451.85 V, respectively.  
 
Results and discussions 
Here, we consider the two-dimensional case of an electrohydrodynamic flow inside a microchannel with an active 
electrode section. The microchannel consists of three parts including the inlet, electrode and exit sections. Figure 
1 represents the considered configuration for the microchannel and the constituting sections. The considered 
sample case mimics the electrode section and the insulating parts in real electrostatic atomizers. Although the 
presence of insulating parts at both before and after locations with regard to the electrode section might depend on 
the particular design of the electrostatic atomizer. 

 

 

Figure 1. Considered configuration with the opposite polarity electrodes and insulated entry and exit sections. The compact and 
diffuse layers are also depicted. 

 
A fully-developed pressure-driven laminar flow with a maximum velocity of 0.004 msିଵ is considered as the inflow. 
The entry and electrode sections are considered to be 6 µm, and the exit section’s length is 96 µm. The channel 
height is 20 µm. The Reynolds number, defined based on the maximum inlet velocity and the half-channel height, 
is 0.0005. No-slip boundary condition is imposed for the velocity along the channel walls. The entry and exit sections 
are fully insulated with no faradaic reactions or any non-specific adsorption (i.e. dc∗

ି dy∗⁄ = dc∗
ା dy∗⁄ = 0). The 

middle part (active electrodes) sustain electric current due to the faradaic reactions and is connected to batteries. 
The ion flux values at the electrode surface, where the convective term vanishes, are found through employing 
relation (7) which accounts for the Butler-Volmer-Frumkin kinetics at the electrode surface. The computational 
boundary at the electrodes starts from the interface of the compact and diffuse layers.  
The definition of flux without the convective term yields: 

 j∗
± = −D

ୢୡ∗
±

ୢ୷∗
∓

ୈୣ

୩ా୘
c∗

± ୢ஦∗

ୢ୷∗
        (8) 

The cations flux at the anodic interface (between the compact and diffuse layers) vanishes, whereas at the cathodic 
interface it is determined by the connected battery as j∗

ା. These conditions provide the following boundary conditions 
for the cations at the cathodic and anodic interfaces: 
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Similarly, the anion boundary conditions at the cathodic and anodic interfaces are as: 
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Due to the similar boundary conditions, the cation and anion fluxes are equal i.e. |j∗
ି| = |j∗

ା|. Hence, the ion fluxes 
are found through concurrent experimental measurements (Eq. (7)) as |j∗

ି| = |j∗
ା| = Jୣ∗ e⁄ . The applied potentials at 

the electrodes are considered to be ±500 V. This yields the ion fluxes to be 3.1×1014 m-2 s-1.  
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Situated between the electrode surface and the polarized diffuse layer is a thin compact layer, which has been 
described by theoretical models. The model proposed by Stern [16] considers a dielectric surface with a non-zero 
ζ-potential without sustaining an electric current. A mono-layer of non-specifically adsorbed ions create the compact 
layer in the seminal work of Stern. Liquids with the relative dielectric permittivity close to 1 experience almost all of 
the potential drop across the compact layer, while in liquids with high relative dielectric permittivity (ε ≫ 1) the major 
part of the potential drop occurs across the diffuse layer [21]. Based on the relative dielectric permittivity of canola 
oil liquid (εୡୟ୬୭୪ୟ = 3), we estimated 99% percent of the potential drop to occur across the compact layer. Hence, 
the electric potential at the interface of the compact and diffuse layers is assumed to be 5 V.  

Two different grids are considered to provide results independent of the grid resolution. The considered grid 
resolutions are indicated in Table 1. The cells length in x∗ direction, cell heights at the wall and the center of the 
channel and also the total number of grid points are denoted by Δx∗, Δy∗୵ୟ୪୪, Δy∗ୡୣ୬୲ୣ୰ and n୲୭୲, respectively.  
 

Table 1. Grid specifications for the simulations of the electrohydrodynamic flow. 

Grid 𝚫𝐱∗ (nm) 𝚫𝐲∗𝐰𝐚𝐥𝐥 (nm) 𝚫𝐲∗𝐜𝐞𝐧𝐭𝐞𝐫 (nm) 𝐧𝐭𝐨𝐭 

Coarse 67  3.94 78 2592000 
Fine 60  3.4 69 3240000 

 

The results obtained based on the two grids are in agreement and no further grid refinement was considered.  
Moreover, further local coarsening of grid cells close to the electrode produced inaccurate numerical predictions 
(numerical overshooting occured). In the following, the results based on the fine grid are presented and discussed. 

Figure 2 provides the two-dimensional contours of anions and cations distribution in the computational domain. 
Strong repulsion of co-ions from the electrodes is obvious in this figure (blue color). Slight accumulation (red color 
in the magnified view) of counter-ions at the vicinity of the electrodes is also observed. This accumulation results 
as the outcome of the competition between the attraction of counter-ions due to the electro-migration and the 
discharge of counter-ions due to the faradaic reactions occurring at the interface of the compact and diffuse layers.  
 

 
Figure 2. Two-dimensional contours of ions in the electrohydrodynamic flow of canola oil inside a microchannel exposed to 

opposite-polarity electrodes. (a) Cation concentrations and (b) anion concentrations. 
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The dimensionless cation concentration along the channel and in different vertical positions are shown in Fig. 3. 
Here and hereinafter, the half-channel height (h∗ = 10 μm) and bulk ion concentration (c∗ஶ = 8 × 10ଵ଻ mିଷ) are the 
employed scales to provide dimensionless values for the coordinates (x∗ and y∗) and ion concentrations (c∗

ି and 
c∗

ା), respectively.  

 

 
 

Figure 3. Dimensionless cation concentration along the channel and in different vertical positions.  

(a) y= 0.03, (b) y= 0.2, (c) y= 1.97. 

 
In Fig. 3, at y =  0.03 and for the locations between the electrode borders, an increase in the cation concentration 
is observed. This implies that the attraction of cations through the electromigration process is greater than the 
consumption of cations through discharge at the cathodic interface, which results in this accumulation in the vicinity 
of the cathode surface. At lower-half vertical positions, i.e. y ∈ {0.03,0.2}, and after the electrode section, the cation 
concentration tends to decrease. This can be explained by the diffusion of cations from the lower half to the upper 
half of the channel. Diffusion tends to balance the cation concentration at the exit section of the channel. The 
gradual increase of cation concentration at y= 1.97 and after the electrode section can be interpreted by a similar 
argument. The strong repulsion of cations from the anode (upper electrode) is obvious in Fig. 3(c) which shows a 
void region even after the electrode section up to x= 4 locations.  

We define the thickness of the diffuse layer (λୢ) as the vertical distance from the interface of the compact and 
diffuse layers (the starting point of the computational domain near the electrodes) to the position where the absolute 
net charge drops to 1% of its maximum value at the interface, i.e., to 0.01e(c∗

ା − c∗
ି)|୧୬୲.. Figure 4 provides the 

thickness of the diffuse layer along the cathode (the lower half electrode). Due to the symmetry, we expect the 
same values of diffuse layer thickness for the anode (the upper half electrode). It is seen in Fig. 4 that the effect of 
the border edges of the electrode section and the insulated walls provides a concave distribution for the diffuse 
layer profile. It is expected that the diffuse layer thickness distribution includes a more flattened profile by increasing 
the electrode section.  

In Fig. 1, the exit section is considered long enough to track the components of the ionic balance terms present in 
Eqs. (3-4) at far downstream locations. The ionic transport equations include the convective, electro-migrative and 
the diffusive terms. Due to the symmetric boundary conditions, the results for the cation balance terms on the lower 
half of the channel resemble the results for the anions on the upper half. Hence, only the cation transport equation 
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terms are investigated along the exit section of the channel at different vertical positions. The scale τୡ c∗ஶ⁄ =

(8 × 10ଵ଻)ିଵ [mଷs] is utilized to provide the convective ∇ ∙ (c∗
ା𝐕∗) , electro-migrative (De k୆T⁄ )∇ ∙ (c∗

ା∇φ∗) and the 
diffusive terms D∇ଶc∗

ା dimensionless. It is important to recall that the y-component of the convective term is absent 
in the channel flow with a spanwise velocity profile. 

 
Figure 4. Diffuse layer thickness inside the electrode section (lower half) for the two-dimensional microchannel flow case 

 
Three different vertical positions are considered to plot the dimensionless components of the cation transport 
equation in downstream locations after the electrode section. The first and last positions are at the vicinity of the 
upper and lower walls, while the second position is farther away from the lower wall and still in the lower half of the 
channel (y= 0.2). Figure 5 depicts the dimensionless components of the cation transport equation in various vertical 
positions.  

 

 

Figure 5. Dimensionless components of the cation transport equation terms at different vertical positions and after the electrode 
section. (a) y= 0.017, (b) y= 0.2, (c) y= 1.983 
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As seen in Fig. 5, the components at the vicinity of the upper wall (y=1.983) are almost negligible. It is seen that the 
repulsion of the co-ions (cations) from the anodic part (upper half) does not affect the near-wall downstream 
locations. However, in the vicinity of the lower wall (y= 0.017), components of the cation transport equation take 
non-negligible values. The x-component of the electro-migrative term (the attraction of counter-ions) becomes 
negligible at far downstream locations (i.e., x>4). However, the y component of the diffusive and electro-migrative 
terms remain non-negligible at all downstream locations and much bigger compared to the x-component of the 
convective term, since, close to the wall, the convective term diminishes significantly. A slow-diminishing trend is 
observed in the magnitude of the y-component of electro-migrative and diffusive terms in the vicinity of the lower-
wall (cathodic half-cell) by approaching the outlet section and is expected to reach zero values if the exit section is 
sufficiently elongated. 

At the middle of the lower half of the channel (y= 0.2) and by moving away from the electrode toward the channel 
outlet (x>4), all terms diminish except the y-component of the electro-migrative term and the x-component of the 
convective term. It is deduced that by moving away from the lower wall (cathodic part) toward the middle of the 
channel, the diffusion of cations (counter-ions) reduces tremendously. 
 
Conclusions 
A computational model is introduced to study the electrification mechanism and the electrohydrodynamic flow inside 
the electrostatic atomizers. The suggested model is applied to a microchannel with the electrode and insulated 
sections resembling the conditions inside the electrostatic atomizers. Realistic ionic boundary conditions are 
considered at the electrodes taking into account the counter-ions discharge based on the concurrent experimental 
measurements. The cation concentration along the channel is investigated at different vertical positions. Strong 
repulsion of cations from the anodic surface influences the concentration at downstream locations in upper-half of 
the channel significantly. It is observed that the diffusion from the lower half of the channel gradually replenishes 
the void area of cation concentration downstream of the electrode and in the upper half of the channel. The cation 
transport equation components are compared with each other along the electrically-insulated exit section of the 
microchannel. It is deduced that at downstream locations close to the wall, the diffusion of the counter-ions remains 
high. However, by moving away from the wall toward the center-line of the channel, the magnitude of the diffusion 
of counter-ions decreases significantly. The y-component of the electromigration of counter-ions (attraction) 
remains high at both close-to-the-wall and far-from-the-wall locations. By moving away from the electrode and 
approaching the outlet of the microchannel; both diffusive and electro-migrative terms start to decrease gradually. 
It is expected to observe zero values of diffusive and electro-migrative terms at the exit for sufficiently large exit-
section lengths. The diffuse layer thickness is defined and indicated along the electrode section. It seems that the 
thickness of the diffuse layer is affected by the electrode length. In this study, the diffuse layer takes a concave 
configuration. It is expected to see a uniform diffuse-layer thickness along the length of the channel for higher ratios 
of the electrode length to the channel half-height.  
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Nomenclature 
Roman Symbols 

aୡ constant parameter 
bୡ constant parameter 
c∗

ା cation concentration [m-3] 
c∗

ି anion concentration [m-3] 
c∗ஶ bulk ion concentration [m-3] 
D diffusivity coefficient [m2 s-1] 
𝐄∗ electric field vector [V m-1] 
𝐄∗ୣ୶୲ externally applied electric field vector [V m-1] 
e elementary charge [C] 
H∗ channel height [m] 
h∗ half channel height [m] 
Jୣ∗ electric current density [A m-2] 
j∗
± ion flux [m-2 s-1] 

j଴∗ exchange current density [A m-2] 
k୆ Boltzmann constant [m2 kg s-2 K] 
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n୲୭୲ total number of grid points 
p∗ pressure [Pa] 
q∗ charge density [C m-3] 
T temperature [K] 
V଴∗ electrode potential [V] 
𝐕∗ velocity vector [m] 
x∗ coordinate [m] 
Δx∗ cell size in x∗ direction [m] 
y∗ coordinate [m] 
Δy∗ cell size in y∗ direction [m] 
t∗ time [s] 
 
Greek Symbols 

ε solvent relative dielectric permittivity 
ε଴ vacuum permittivity [F m-1] 
ζ zeta potential [V] 
λୢ diffuse layer thickness [m] 
λୈ Debye screening length [m] 
𝜇 dynamic viscosity [kg m-1 s-1] 
ρ∗ density [kg m-3] 
σ electric conductivity [S m-1] 
τୡ charge relaxation time [s-1] 
φ∗ electric potential [V] 
 
Other Symbols 

∗ dimensional variable 
∇ gradient operator [m-1] 
∇ଶ Laplacian operator [m-2] 
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